Facebook
TwitterXverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.
With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.
🔥 Key Features:
Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.
Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.
Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.
Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.
Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.
Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.
🏆Primary Use Cases:
Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.
Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.
Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.
Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.
💡 Why Choose Xverum’s POI Data?
Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.
This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.
The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:
business_id: A unique Google Places identifier for each business, ensuring distinct entries.phone_number: The contact number associated with the business. It provides a direct means of communication.name: The official name of the business as listed on Google Maps.full_address: The complete postal address of the business, including locality and geographic details.latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.longitude: The geographic longitude coordinate of the business location.review_count: The total number of reviews the business has received on Google Maps.rating: The average user rating out of 5 for the business, reflecting customer satisfaction.timezone: The world timezone the business is located in, important for temporal analysis.website: The official website URL of the business, providing further information and contact options.category: The category or type of service the business provides, such as restaurant, museum, etc.claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.plus_code: A sho...
Facebook
TwitterDataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22121490%2F7189944f8fc292a094c90daa799d08ca%2FChatGPT%20Image%2015%20Kas%202025%2014_07_37.png?generation=1763204959770660&alt=media" alt="">
This synthetic dataset simulates 300 global cities across 6 major geographic regions, designed specifically for unsupervised machine learning and clustering analysis. It explores how economic status, environmental quality, infrastructure, and digital access shape urban lifestyles worldwide.
| Feature | Description | Range |
|---|---|---|
| 10 Features | Economic, environmental & social indicators | Realistically scaled |
| 300 Cities | Europe, Asia, Americas, Africa, Oceania | Diverse distributions |
| Strong Correlations | Income ↔ Rent (+0.8), Density ↔ Pollution (+0.6) | ML-ready |
| No Missing Values | Clean, preprocessed data | Ready for analysis |
| 4-5 Natural Clusters | Metropolitan hubs, eco-towns, developing centers | Pre-validated |
✅ Realistic Correlations: Income strongly predicts rent (+0.8), internet access (+0.7), and happiness (+0.6)
✅ Regional Diversity: Each region has distinct economic and environmental characteristics
✅ Clustering-Ready: Naturally separable into 4-5 lifestyle archetypes
✅ Beginner-Friendly: No data cleaning required, includes example code
✅ Documented: Comprehensive README with methodology and use cases
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Load and prepare
df = pd.read_csv('city_lifestyle_dataset.csv')
X = df.drop(['city_name', 'country'], axis=1)
X_scaled = StandardScaler().fit_transform(X)
# Cluster
kmeans = KMeans(n_clusters=5, random_state=42)
df['cluster'] = kmeans.fit_predict(X_scaled)
# Analyze
print(df.groupby('cluster').mean())
After working with this dataset, you will be able to: 1. Apply K-Means, DBSCAN, and Hierarchical Clustering 2. Use PCA for dimensionality reduction and visualization 3. Interpret correlation matrices and feature relationships 4. Create geographic visualizations with cluster assignments 5. Profile and name discovered clusters based on characteristics
| Cluster | Characteristics | Example Cities |
|---|---|---|
| Metropolitan Tech Hubs | High income, density, rent | Silicon Valley, Singapore |
| Eco-Friendly Towns | Low density, clean air, high happiness | Nordic cities |
| Developing Centers | Mid income, high density, poor air | Emerging markets |
| Low-Income Suburban | Low infrastructure, income | Rural areas |
| Industrial Mega-Cities | Very high density, pollution | Manufacturing hubs |
Unlike random synthetic data, this dataset was carefully engineered with: - ✨ Realistic correlation structures based on urban research - 🌍 Regional characteristics matching real-world patterns - 🎯 Optimal cluster separability (validated via silhouette scores) - 📚 Comprehensive documentation and starter code
✓ Learn clustering without data cleaning hassles
✓ Practice PCA and dimensionality reduction
✓ Create beautiful geographic visualizations
✓ Understand feature correlation in real-world contexts
✓ Build a portfolio project with clear business insights
This dataset was designed for educational purposes in machine learning and data science. While synthetic, it reflects real patterns observed in global urban development research.
Happy Clustering! 🎉
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.
Facebook
TwitterWe seek to mitigate the challenges with web-scraped and off-the-shelf POI data, and provide tailored, complete, and manually verified datasets with Geolancer. Our goal is to help represent the physical world accurately for applications and services dependent on precise POI data, and offer a reliable basis for geospatial analysis and intelligence.
Our POI database is powered by our proprietary POI collection and verification platform, Geolancer, which provides manually verified, authentic, accurate, and up-to-date POI datasets.
Enrich your geospatial applications with a contextual layer of comprehensive and actionable information on landmarks, key features, business areas, and many more granular, on-demand attributes. We offer on-demand data collection and verification services that fit unique use cases and business requirements. Using our advanced data acquisition techniques, we build and offer tailormade POI datasets. Combined with our expertise in location data solutions, we can be a holistic data partner for our customers.
KEY FEATURES - Our proprietary, industry-leading manual verification platform Geolancer delivers up-to-date, authentic data points
POI-as-a-Service with on-demand verification and collection in 170+ countries leveraging our network of 1M+ contributors
Customise your feed by specific refresh rate, location, country, category, and brand based on your specific needs
Data Noise Filtering Algorithms normalise and de-dupe POI data that is ready for analysis with minimal preparation
DATA QUALITY
Quadrant’s POI data are manually collected and verified by Geolancers. Our network of freelancers, maps cities and neighborhoods adding and updating POIs on our proprietary app Geolancer on their smartphone. Compared to other methods, this process guarantees accuracy and promises a healthy stream of POI data. This method of data collection also steers clear of infringement on users’ privacy and sale of their location data. These purpose-built apps do not store, collect, or share any data other than the physical location (without tying context back to an actual human being and their mobile device).
USE CASES
The main goal of POI data is to identify a place of interest, establish its accurate location, and help businesses understand the happenings around that place to make better, well-informed decisions. POI can be essential in assessing competition, improving operational efficiency, planning the expansion of your business, and more.
It can be used by businesses to power their apps and platforms for last-mile delivery, navigation, mapping, logistics, and more. Combined with mobility data, POI data can be employed by retail outlets to monitor traffic to one of their sites or of their competitors. Logistics businesses can save costs and improve customer experience with accurate address data. Real estate companies use POI data for site selection and project planning based on market potential. Governments can use POI data to enforce regulations, monitor public health and well-being, plan public infrastructure and services, and more. A few common and widespread use cases of POI data are:
ABOUT GEOLANCER
Quadrant's POI-as-a-Service is powered by Geolancer, our industry-leading manual verification project. Geolancers, equipped with a smartphone running our proprietary app, manually add and verify POI data points, ensuring accuracy and authenticity. Geolancer helps data buyers acquire data with the update frequency suited for their specific use case.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains ten million synthetically generated sales transactions from various geographic locations across the globe. It includes details on product sales, revenue, geographic coordinates, and other relevant features that can be used for analyzing geographic influences on product demand.
geographic_product_demand_dataset_10M.csvThis dataset is designed for geospatial analysis of product demand, sales forecasting, and machine learning tasks. You can explore geographic patterns in consumer demand and analyze how product categories and sales revenues vary across different regions.
Date column to a datetime format before conducting temporal analysis.Product Category if applying machine learning models.
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between paved and unpaved surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the paper
Roughly 0.2839 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.026 and 0.0089 (in million kms), corressponding to 9.1664% and 3.1261% respectively of the total road length in the dataset region. 0.249 million km or 87.7075% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0003 million km of information (corressponding to 0.1046% of total missing information on road surface)
It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications.
This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications.
AI features:
pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved."
pred_label: Binary label associated with pred_class (0 = paved, 1 = unpaved).
osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved."
combined_surface_osm_priority: Surface classification combining pred_label and surface(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved."
combined_surface_DL_priority: Surface classification combining pred_label and surface(OSM) while prioritizing DL prediction pred_label, classified as "paved" or "unpaved."
n_of_predictions_used: Number of predictions used for the feature length estimation.
predicted_length: Predicted length based on the DL model’s estimations, in meters.
DL_mean_timestamp: Mean timestamp of the predictions used, for comparison.
OSM features may have these attributes(Learn what tags mean here):
name: Name of the feature, if available in OSM.
name:en: Name of the feature in English, if available in OSM.
name:* (in local language): Name of the feature in the local official language, where available.
highway: Road classification based on OSM tags (e.g., residential, motorway, footway).
surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt).
smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad).
width: Width of the road, where available.
lanes: Number of lanes on the road.
oneway: Indicates if the road is one-way (yes or no).
bridge: Specifies if the feature is a bridge (yes or no).
layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels).
source: Source of the data, indicating the origin or authority of specific attributes.
Urban classification features may have these attributes:
continent: The continent where the data point is located (e.g., Europe, Asia).
country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States).
urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban)
urban_area: Name of the urban area or city where the data point is located.
osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature.
osm_type: Type of OSM element (e.g., node, way, relation).
The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer.
This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information.
We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
I wanted to make some geospatial visualizations to convey the current severity of COVID19 in different parts of the U.S..
I liked the NYTimes COVID dataset, but it was lacking information on county boundary shape data, population per county, new cases / deaths per day, and per capita calculations, and county demographics.
After a lot of work tracking down the different data sources I wanted and doing all of the data wrangling and joins in python, I wanted to open-source the final enriched data set in order to give others a head start in their COVID-19 related analytic, modeling, and visualization efforts.
This dataset is enriched with county shapes, county center point coordinates, 2019 census population estimates, county population densities, cases and deaths per capita, and calculated per day cases / deaths metrics. It contains daily data per county back to January, allowing for analyizng changes over time.
UPDATE: I have also included demographic information per county, including ages, races, and gender breakdown. This could help determine which counties are most susceptible to an outbreak.
Geospatial analysis and visualization - Which counties are currently getting hit the hardest (per capita and totals)? - What patterns are there in the spread of the virus across counties? (network based spread simulations using county center lat / lons) -county population densities play a role in how quickly the virus spreads? -how does a specific county/state cases and deaths compare to other counties/states? Join with other county level datasets easily (with fips code column)
See the column descriptions for more details on the dataset
COVID-19 U.S. Time-lapse: Confirmed Cases per County (per capita)
https://github.com/ringhilterra/enriched-covid19-data/blob/master/example_viz/covid-cases-final-04-06.gif?raw=true" alt="">-
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding the mobility of entities in geospatial data is important to many fields, ranging from the social sciences to epidemiology, economics or air traffic control. Visualizing such entities can be challenging as it requires preserving both their explicit properties (spatial trajectories) and their implicit properties (abstract attributes of those trajectories). An existing technique called origin–destination maps preserves both explicit and implicit properties of datasets, using the spatial nesting technique. In this paper, we aim at generalizing this technique beyond an origins-and-destinations dataset (2-attribute datasets), to explore multi-dimensional datasets (N-attribute datasets) with the nesting approach. We present an abstraction framework – we call Gridify – and an interactive open-source tool implementing this framework using several levels of nested maps. We report on several case studies representative of the types of dimensions found in geospatial datasets (quantitative, temporal, discrete, boolean), showing the applicability of this approach to achieve visual exploratory analysis tasks in various application domains.
Facebook
TwitterThese products were developed to provide scientific and correspondingly spatially explicit information regarding the distribution and abundance of conifers (namely, singleleaf pinyon (Pinus monophylla), Utah juniper (Juniperus osteosperma), and western juniper (Juniperus occidentalis)) in Nevada and portions of northeastern California. Encroachment of these trees into sagebrush ecosystems of the Great Basin can present a threat to populations of greater sage-grouse (Centrocercus urophasianus). These data provide land managers and other interested parties with a high-resolution representation of conifers across the range of sage-grouse habitat in Nevada and northeastern California that can be used for a variety of management and research applications. We mapped conifer trees at 1 x 1 meter resolution across the extent of all Nevada Department of Wildlife Sage-grouse Population Management Units plus a 10 km buffer. Using 2010 and 2013 National Agriculture Imagery Program digital orthophoto quads (DOQQs) as our reference imagery, we applied object-based image analysis with Feature Analyst software (Overwatch, 2013) to classify conifer features across our study extent. This method relies on machine learning algorithms that extract features from imagery based on their spectral and spatial signatures. Conifers in 6230 DOQQs were classified and outputs were then tested for errors of omission and commission using stratified random sampling. Results of the random sampling were used to populate a confusion matrix and calculate the overall map accuracy of 84.3 percent. We provide 5 sets of products for this mapping process across the entire mapping extent: (1) a shapefile representing accuracy results linked to our mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 x 1 meter resolution; (3) a 30 x 30 meter resolution raster representing percentage of conifer canopy cover within each cell from 0 to 100; (4) 1 x 1 meter resolution canopy cover classification rasters derived from a 50 meter radius moving window analysis; and (5) a raster prioritizing pinyon-juniper management for sage-grouse habitat restoration efforts. The latter three products can be reclassified into user-specified bins to meet different management or study objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration. These data support the following publication: Coates, P.S., Gustafson, K.B., Roth, C.L., Chenaille, M.P., Ricca, M.A., Mauch, Kimberly, Sanchez-Chopitea, Erika, Kroger, T.J., Perry, W.M., and Casazza, M.L., 2017, Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales: U.S. Geological Survey Open-File Report 2017-1093, 40 p., https://doi.org/10.3133/ofr20171093. References: ESRI, 2013, ArcGIS Desktop: Release 10.2: Environmental Systems Research Institute. Overwatch, 2013, Feature Analyst Version 5.1.2.0 for ArcGIS: Overwatch Systems Ltd.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/3469/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3469/terms
This study used crime count data from the Pittsburgh, Pennsylvania, Bureau of Police offense reports and 911 computer-aided dispatch (CAD) calls to determine the best univariate forecast method for crime and to evaluate the value of leading indicator crime forecast models. The researchers used the rolling-horizon experimental design, a design that maximizes the number of forecasts for a given time series at different times and under different conditions. Under this design, several forecast models are used to make alternative forecasts in parallel. For each forecast model included in an experiment, the researchers estimated models on training data, forecasted one month ahead to new data not previously seen by the model, and calculated and saved the forecast error. Then they added the observed value of the previously forecasted data point to the next month's training data, dropped the oldest historical data point, and forecasted the following month's data point. This process continued over a number of months. A total of 15 statistical datasets and 3 geographic information systems (GIS) shapefiles resulted from this study. The statistical datasets consist of Univariate Forecast Data by Police Precinct (Dataset 1) with 3,240 cases Output Data from the Univariate Forecasting Program: Sectors and Forecast Errors (Dataset 2) with 17,892 cases Multivariate, Leading Indicator Forecast Data by Grid Cell (Dataset 3) with 5,940 cases Output Data from the 911 Drug Calls Forecast Program (Dataset 4) with 5,112 cases Output Data from the Part One Property Crimes Forecast Program (Dataset 5) with 5,112 cases Output Data from the Part One Violent Crimes Forecast Program (Dataset 6) with 5,112 cases Input Data for the Regression Forecast Program for 911 Drug Calls (Dataset 7) with 10,011 cases Input Data for the Regression Forecast Program for Part One Property Crimes (Dataset 8) with 10,011 cases Input Data for the Regression Forecast Program for Part One Violent Crimes (Dataset 9) with 10,011 cases Output Data from Regression Forecast Program for 911 Drug Calls: Estimated Coefficients for Leading Indicator Models (Dataset 10) with 36 cases Output Data from Regression Forecast Program for Part One Property Crimes: Estimated Coefficients for Leading Indicator Models (Dataset 11) with 36 cases Output Data from Regression Forecast Program for Part One Violent Crimes: Estimated Coefficients for Leading Indicator Models (Dataset 12) with 36 cases Output Data from Regression Forecast Program for 911 Drug Calls: Forecast Errors (Dataset 13) with 4,936 cases Output Data from Regression Forecast Program for Part One Property Crimes: Forecast Errors (Dataset 14) with 4,936 cases Output Data from Regression Forecast Program for Part One Violent Crimes: Forecast Errors (Dataset 15) with 4,936 cases. The GIS Shapefiles (Dataset 16) are provided with the study in a single zip file: Included are polygon data for the 4,000 foot, square, uniform grid system used for much of the Pittsburgh crime data (grid400); polygon data for the 6 police precincts, alternatively called districts or zones, of Pittsburgh(policedist); and polygon data for the 3 major rivers in Pittsburgh the Allegheny, Monongahela, and Ohio (rivers).
Facebook
TwitterUnlock precise, high-quality GIS data covering 3.7M+ verified locations across the Netherlands. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal Buffers (this dataset)Place AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
Facebook
TwitterThis seminar will introduce the KNIME Analytics Platform and its Geospatial Analytics extension developed by the Spatial Data Lab (SDL) team at Harvard's Center for Geographic Analysis (CGA). The SDL team members will share the presentations, presenting the project's vision and demonstrating the new way of performing geospatial analysis in a codeless visual way with case studies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
Facebook
TwitterHomeland Security Use Cases: Use cases describe how the data may be used and help to define and clarify requirements. 1) In the event of a threat against the dams infrastructure, this dataset may be used to locate dams needing protection. 2) An accident has occurred at a dam and emergency medical personnel / rescue personnel must quickly deploy to the dam. 3) A resource for situational awareness planning and response for federal government eventsDam locations were digitized using any combination of ortho imagery, topographic DRGs, NAVTEQ streets, NHD flowlines, NHD landmarklines, TIGER hydrography, contact with authoritative sources or web research. A line was created by tracing the crest of the dam using referencing imagery and the NHD flowlines. Entities classified as both MaxCapacity and High Hazard are represented once. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. No entities for American Samoa, District of Columbia, the Northern Mariana Islands or the Virgin Islands are included in this dataset. The currentness of this dataset is indicated by the [GEODATE] attribute. HIFLD source.
Facebook
TwitterThe SEN12TS dataset contains Sentinel-1, Sentinel-2, and labeled land cover image triplets over six agro-ecologically diverse areas of interest: California, Iowa, Catalonia, Ethiopia, Uganda, and Sumatra. Using the Descartes Labs geospatial analytics platform, 246,400 triplets are produced at 10m resolution over 31,398 256-by-256-pixel unique spatial tiles for a total size of 1.69 TB. The image triplets include radiometric terrain corrected synthetic aperture radar (SAR) backscatter measurements; interferometric synthetic aperture radar (InSAR) coherence and phase layers; local incidence angle and ground slope values; multispectral optical imagery; and decameter-resolution land cover data. Moreover, sensed imagery is available in timeseries: Within an image triplet, radar-derived imagery is collected at four timesteps 12 days apart. For the same spatial extent, up to 16 image triplets are available across the calendar year of 2020.
The SEN12TS documentation demonstrates two initial use cases for the dataset. The first transforms radar imagery into enhanced vegetation indices by means of a generative adversarial network, and the second tests combinations of input imagery for cropland classification.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesXinjiang is one of the high TB burden provinces of China. A spatial analysis was conducted using geographical information system (GIS) technology to improve the understanding of geographic variation of the pulmonary TB occurrence in Xinjiang, its predictors, and to search for targeted interventions.MethodsNumbers of reported pulmonary TB cases were collected at county/district level from TB surveillance system database. Population data were extracted from Xinjiang Statistical Yearbook (2006~2014). Spatial autocorrelation (or dependency) was assessed using global Moran’s I statistic. Anselin’s local Moran’s I and local Getis-Ord statistics were used to detect local spatial clusters. Ordinary least squares (OLS) regression, spatial lag model (SLM) and geographically-weighted regression (GWR) models were used to explore the socio-demographic predictors of pulmonary TB incidence from global and local perspectives. SPSS17.0, ArcGIS10.2.2, and GeoDA software were used for data analysis.ResultsIncidence of sputum smear positive (SS+) TB and new SS+TB showed a declining trend from 2005 to 2013. Pulmonary TB incidence showed a declining trend from 2005 to 2010 and a rising trend since 2011 mainly caused by the rising trend of sputum smear negative (SS-) TB incidence (p
Facebook
TwitterXverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.
With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.
🔥 Key Features:
Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.
Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.
Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.
Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.
Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.
Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.
🏆Primary Use Cases:
Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.
Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.
Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.
Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.
💡 Why Choose Xverum’s POI Data?
Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!