100+ datasets found
  1. a

    Data from: GEOSPATIAL DATA Progress Needed on Identifying Expenditures,...

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2024). GEOSPATIAL DATA Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts [Dataset]. https://hub.arcgis.com/documents/c0cef9e4901143cbb9f15ddbb49ca3b4
    Explore at:
    Dataset updated
    Jun 11, 2024
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    Description

    Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts The federal government collects, maintains, and uses geospatial information—data linked to specific geographic locations—to help support varied missions, including national security and natural resources conservation. To coordinate geospatial activities, in 1994 the President issued an executive order to develop a National Spatial Data Infrastructure—a framework for coordination that includes standards, data themes, and a clearinghouse. GAO was asked to review federal and state coordination of geospatial data. GAO’s objectives were to (1) describe the geospatial data that selected federal agencies and states use and how much is spent on geospatial data; (2) assess progress in establishing the National Spatial Data Infrastructure; and (3) determine whether selected federal agencies and states invest in duplicative geospatial data. To do so, GAO identified federal and state uses of geospatial data; evaluated available cost data from 2013 to 2015; assessed FGDC’s and selected agencies’ efforts to establish the infrastructure; and analyzed federal and state datasets to identify duplication. What GAO Found Federal agencies and state governments use a variety of geospatial datasets to support their missions. For example, after Hurricane Sandy in 2012, the Federal Emergency Management Agency used geospatial data to identify 44,000 households that were damaged and inaccessible and reported that, as a result, it was able to provide expedited assistance to area residents. Federal agencies report spending billions of dollars on geospatial investments; however, the estimates are understated because agencies do not always track geospatial investments. For example, these estimates do not include billions of dollars spent on earth-observing satellites that produce volumes of geospatial data. The Federal Geographic Data Committee (FGDC) and the Office of Management and Budget (OMB) have started an initiative to have agencies identify and report annually on geospatial-related investments as part of the fiscal year 2017 budget process. FGDC and selected federal agencies have made progress in implementing their responsibilities for the National Spatial Data Infrastructure as outlined in OMB guidance; however, critical items remain incomplete. For example, the committee established a clearinghouse for records on geospatial data, but the clearinghouse lacks an effective search capability and performance monitoring. FGDC also initiated plans and activities for coordinating with state governments on the collection of geospatial data; however, state officials GAO contacted are generally not satisfied with the committee’s efforts to coordinate with them. Among other reasons, they feel that the committee is focused on a federal perspective rather than a national one, and that state recommendations are often ignored. In addition, selected agencies have made limited progress in their own strategic planning efforts and in using the clearinghouse to register their data to ensure they do not invest in duplicative data. For example, 8 of the committee’s 32 member agencies have begun to register their data on the clearinghouse, and they have registered 59 percent of the geospatial data they deemed critical. Part of the reason that agencies are not fulfilling their responsibilities is that OMB has not made it a priority to oversee these efforts. Until OMB ensures that FGDC and federal agencies fully implement their responsibilities, the vision of improving the coordination of geospatial information and reducing duplicative investments will not be fully realized. OMB guidance calls for agencies to eliminate duplication, avoid redundant expenditures, and improve the efficiency and effectiveness of the sharing and dissemination of geospatial data. However, some data are collected multiple times by federal, state, and local entities, resulting in duplication in effort and resources. A new initiative to create a national address database could potentially result in significant savings for federal, state, and local governments. However, agencies face challenges in effectively coordinating address data collection efforts, including statutory restrictions on sharing certain federal address data. Until there is effective coordination across the National Spatial Data Infrastructure, there will continue to be duplicative efforts to obtain and maintain these data at every level of government.https://www.gao.gov/assets/d15193.pdfWhat GAO Recommends GAO suggests that Congress consider assessing statutory limitations on address data to foster progress toward a national address database. GAO also recommends that OMB improve its oversight of FGDC and federal agency initiatives, and that FGDC and selected agencies fully implement initiatives. The agencies generally agreed with the recommendations and identified plans to implement them.

  2. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, Germany, United Kingdom, Canada, United States, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  3. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  4. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  5. Geospatial data for the Vegetation Mapping Inventory Project of Indiana...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Indiana Dunes National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-indiana-dunes-national-lak
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  6. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  7. d

    Polygon Data | Marinas in US and Canada | Map & Geospatial Insights

    • datarade.ai
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract (2023). Polygon Data | Marinas in US and Canada | Map & Geospatial Insights [Dataset]. https://datarade.ai/data-products/xtract-io-geometry-data-marinas-in-us-and-canada-xtract
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    Xtract
    Area covered
    Canada, United States
    Description

    This specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.

    How Do We Create Polygons? -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct detailed indoor polygons. This meticulous process ensures higher accuracy and consistency. -We verify our polygons through multiple quality checks, focusing on accuracy, relevance, and completeness.

    What's More? -Custom Polygon Creation: Our team can build polygons for any location or category based on your specific requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.

    Unlock the Power of POI and Geospatial Data With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market analyses to identify growth opportunities. -Pinpoint the ideal location for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute targeted, location-driven marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.

    Why Choose LocationsXYZ? LocationsXYZ is trusted by leading brands to unlock actionable business insights with our spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI data. Request your free sample today and explore how we can help accelerate your business growth.

  8. Geospatial data for the Vegetation Mapping Inventory Project of Crater Lake...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Crater Lake National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-crater-lake-national-park
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Crater Lake
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Our final map product is a geographic information system (GIS) database of vegetation structure and composition across the Crater Lake National Park terrestrial landscape, including wetlands. The database includes photos we took at all relevé, validation, and accuracy assessment plots, as well as the plots that were done in the previous wetlands inventory. We conducted an accuracy assessment of the map by evaluating 698 stratified random accuracy assessment plots throughout the project area. We intersected these field data with the vegetation map, resulting in an overall thematic accuracy of 86.2 %. The accuracy of the Cliff, Scree & Rock Vegetation map unit was difficult to assess, as only 9% of this vegetation type was available for sampling due to lack of access. In addition, fires that occurred during the 2017 accuracy assessment field season affected our sample design and may have had a small influence on the accuracy. Our geodatabase contains the locations where particular associations are found at 600 relevé plots, 698 accuracy assessment plots, and 803 validation plots.

  9. f

    Publishing Geospatial Data as Linked Data: Graph Processing Techniques for...

    • esip.figshare.com
    pptx
    Updated Feb 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McGibbney, Lewis John (2019). Publishing Geospatial Data as Linked Data: Graph Processing Techniques for Automated Feature Detection and Resolution within Hydrography GIS Products [Dataset]. http://doi.org/10.6084/m9.figshare.7590968.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Feb 6, 2019
    Dataset provided by
    ESIP
    Authors
    McGibbney, Lewis John
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Interesting, largely unexplored data analysis and information retrieval opportunities exist for GIS data. In their current form, traditional data usage patterns for data persisted in shapefiles or spatially-enabled relational databases are limited. Opportunities exist to achieve ESIP’s Winter 2019 theme of ‘increasing the use and value of Earth science data and information’ by transforming geospatial data from their original formats into their Resource Description Framework (RDF) manifestation. This work establishes an innovative workflow enabling the publication for Geospatial data persisted in geospatially enabled databases (PostGIS and MonetDB), ESRI shapefiles and XML, GML, KML, JSON, GeoJSON and CSV documents as graphs of linked open geospatial data. This affords the capability to identify implicit connections between related data that wasn't previously linked e.g. automating the detection of features present within large hydrography datasets as well as smaller regional examples and resolving features in a consistent fashion. This previously unavailable capability is achieved through the use of a semantic technology stack which leverages well matured standards within the Semantic Web space such as RDF as the data model, GeoSPARQL as the data access language and International Resource Identifier’s (IRI) for uniquely identifying and referencing entities such as rivers, streams and other water bodies. In anticipation of NASA’s forthcoming Surface Water Ocean Topography (SWOT – https://swot.jpl.nasa.gov) mission, which once launched in 2021 will make NASA’s first-ever global survey of Earth’s surface water, this work uses Hydrography data products (USGS’s National Hydrography Dataset and other topically relevant examples) as the topic matter. The compelling result is a new, innovative data analysis and information retrieval capability which will increases the use and value of Earth science data (GIS) and information. This presentation was given at the Earth Science Information Partners (ESIP) Winter Meeting in January 2019.

  10. Geospatial data for the Vegetation Mapping Inventory Project of Little River...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Little River Canyon National Preserve [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-little-river-canyon-nation
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Little River Canyon
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Using the National Vegetation Classification System (NVCS) developed by Natureserve, with additional classes and modifiers, overstory vegetation communities for each park were interpreted from stereo color infrared aerial photographs using manual interpretation methods. Using a minimum mapping unit of 0.5 hectares (MMU = 0.5 ha), polygons representing areas of relatively uniform vegetation were delineated and annotated on clear plastic overlays registered to the aerial photographs. Polygons were labeled according to the dominant vegetation community. Where the polygons were not uniform, second and third vegetation classes were added. Further, a number of modifier codes were employed to indicate important aspects of the polygon that could be interpreted from the photograph (for example, burn condition). The polygons on the plastic overlays were then corrected using photogrammetric procedures and converted to vector format for use in creating a geographic information system (GIS) database for each park. In addition, high resolution color orthophotographs were created from the original aerial photographs for use in the GIS. Upon completion of the GIS database (including vegetation, orthophotos and updated roads and hydrology layers), both hardcopy and softcopy maps were produced for delivery. Metadata for each database includes a description of the vegetation classification system used for each park, summary statistics and documentation of the sources, procedures and spatial accuracies of the data. At the time of this writing, an accuracy assessment of the vegetation mapping has not been performed for most of these parks.

  11. H

    Virtual GDAL/OGR Geospatial Data Format

    • beta.hydroshare.org
    • hydroshare.org
    • +1more
    zip
    Updated May 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Cera (2018). Virtual GDAL/OGR Geospatial Data Format [Dataset]. https://beta.hydroshare.org/resource/228394bfdc084cb9a21d6c168ed4264e/
    Explore at:
    zip(2.3 MB)Available download formats
    Dataset updated
    May 8, 2018
    Dataset provided by
    HydroShare
    Authors
    Tim Cera
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The GDAL/OGR libraries are open-source, geo-spatial libraries that work with a wide range of raster and vector data sources. One of many impressive features of the GDAL/OGR libraries is the ViRTual (VRT) format. It is an XML format description of how to transform raster or vector data sources on the fly into a new dataset. The transformations include: mosaicking, re-projection, look-up table (raster), change data type (raster), and SQL SELECT command (vector). VRTs can be used by GDAL/OGR functions and utilities as if they were an original source, even allowing for chaining of functionality, for example: have a VRT mosaic hundreds of VRTs that use look-up tables to transform original GeoTiff files. We used the VRT format for the presentation of hydrologic model results, allowing for thousands of small VRT files representing all components of the monthly water balance to be transformations of a single land cover GeoTiff file.

    Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/

  12. m

    GeoStoryTelling

    • data.mendeley.com
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manuel Gonzalez Canche (2023). GeoStoryTelling [Dataset]. http://doi.org/10.17632/nh2c5t3vf9.1
    Explore at:
    Dataset updated
    Apr 21, 2023
    Authors
    Manuel Gonzalez Canche
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.

  13. w

    Data from: GIS -- The Geospatial Data IT Paradigm for the Next Century:...

    • data.wu.ac.at
    Updated Dec 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). GIS -- The Geospatial Data IT Paradigm for the Next Century: Awibengkok Core Example [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/MmVkNTgyYTgtMDhiNy00Y2NlLTlkYTktZTUxNmJjYmU1NTA2
    Explore at:
    Dataset updated
    Dec 29, 2015
    Description

    No Publication Abstract is Available

  14. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Canada, Germany, United States, United Kingdom
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, d

  15. Geographic Information System Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-market-global-industry-analysis
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System Market Outlook



    As per our latest research, the global Geographic Information System (GIS) market size reached USD 12.3 billion in 2024. The industry is experiencing robust expansion, driven by a surging demand for spatial data analytics across diverse sectors. The market is projected to grow at a CAGR of 11.2% from 2025 to 2033, reaching an estimated USD 31.9 billion by 2033. This accelerated growth is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing with GIS solutions, as well as the increasing adoption of location-based services and smart city initiatives worldwide.




    One of the primary growth factors fueling the GIS market is the rapid adoption of geospatial analytics in urban planning and infrastructure development. Governments and private enterprises are leveraging GIS to optimize land use, manage resources efficiently, and enhance public services. Urban planners utilize GIS to analyze demographic trends, plan transportation networks, and ensure sustainable development. The integration of GIS with Building Information Modeling (BIM) and real-time data feeds has further amplified its utility in smart city projects, driving demand for sophisticated GIS platforms. The proliferation of IoT devices and sensors has also enabled the collection of high-resolution geospatial data, which is instrumental in developing predictive models for urban growth and disaster management.




    Another significant driver of the GIS market is the increasing need for disaster management and risk mitigation. GIS technology plays a pivotal role in monitoring natural disasters such as floods, earthquakes, and wildfires. By providing real-time spatial data, GIS enables authorities to make informed decisions, coordinate response efforts, and allocate resources effectively. The growing frequency and intensity of natural disasters, coupled with heightened awareness about climate change, have compelled governments and humanitarian organizations to invest heavily in advanced GIS solutions. These investments are not only aimed at disaster response but also at long-term resilience planning, thereby expanding the scope and scale of GIS applications.




    The expanding application of GIS in the agriculture and utilities sectors is another crucial growth factor. Precision agriculture relies on GIS to analyze soil conditions, monitor crop health, and optimize irrigation practices, ultimately boosting productivity and sustainability. In the utilities sector, GIS is indispensable for asset management, network optimization, and outage response. The integration of GIS with remote sensing technologies and drones has revolutionized data collection and analysis, enabling more accurate and timely decision-making. Moreover, the emergence of cloud-based GIS platforms has democratized access to geospatial data and analytics, empowering small and medium enterprises to harness the power of GIS for operational efficiency and strategic planning.




    From a regional perspective, North America continues to dominate the GIS market, supported by substantial investments in smart infrastructure, advanced research capabilities, and a strong presence of leading technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid urbanization, government initiatives for digital transformation, and increasing adoption of GIS in agriculture and disaster management. Europe is also witnessing significant growth, particularly in transportation, environmental monitoring, and public safety applications. The Middle East & Africa and Latin America are gradually catching up, with growing investments in infrastructure development and resource management. This regional diversification is expected to drive innovation and competition in the global GIS market over the forecast period.





    Component Analysis



    The Geographic Information System market is segmented by component into hardware, software, and services, each playing a unique role

  16. d

    Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones...

    • datarade.ai
    Updated Jun 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones by Country & ZIP [Dataset]. https://datarade.ai/data-products/geopostcodes-boundary-data-global-coverage-880k-polygons-geopostcodes
    Explore at:
    .json, .xml, .geojson, .kmlAvailable download formats
    Dataset updated
    Jun 22, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover postal divisions for the whole world. The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (Geospatial data, Map data, Polygon daa)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  17. QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  18. A

    Open-Source Spatial Analytics (R)

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Open-Source Spatial Analytics (R) [Dataset]. https://data.amerigeoss.org/tl/dataset/open-source-spatial-analytics-r
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course.

    Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material.

    After completing this course you will be able to:

    prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  19. Geospatial data for the Vegetation Mapping Inventory Project of Scotts Bluff...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Scotts Bluff National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-scotts-bluff-national-monu
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Scotts Bluff County
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. In order to avoid two repetitive ground field efforts, the sampling plan was devised from a combination of both vegetation maps. Using OR logic, overlays were created using both maps as input for each class, and random samples were developed for each class in excess of 30 polygons. Where there were less than 30 polygons sample sites were selected non-randomly from each polygon (i.e. a 100% sample). A total of 512 ground sampling sites were developed from a total of 21 vegetation and land cover classes which are represented on both vegetation maps. Using GIS tools, an ASCII file was generated with ground coordinates representing each of these sites. The 512 sets of coordinates were appropriately re-formatted and directly downloaded as waypoints in three North American Rockwell PLGR GPS receivers. During the week of August 4, 1997 three field crews of two persons each worked together at the monument in a coordinated effort to identify vegetation/cover types at each of the sites. The field crews had a paper map showing the location of the plots and the polygon boundaries (but not attributes) overlaid on topographic data. One team member operated the GPS receiver to navigate to the site, and the other identified the vegetation/cover type and provided a general physical description of the site environs. Sites were considered to be circular with a radius of 50 m. from the coordinate point. Where 2 or more vegetation/cover types occurred, or there was a mosaic of types, all were described within the 50 m. radius of the site coordinate.

  20. Geospatial Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geospatial Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geospatial-analytics-market-global-industry-analysis
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Analytics Market Outlook



    As per our latest research, the global geospatial analytics market size stood at USD 98.2 billion in 2024, exhibiting robust momentum driven by the accelerating adoption of spatial data solutions across industries. The market is projected to expand at a CAGR of 13.5% during the forecast period, reaching a remarkable USD 286.5 billion by 2033. This impressive growth is fueled by increasing demand for location-based services, smart city initiatives, and the integration of artificial intelligence with geospatial technologies, which are transforming how organizations derive actionable insights from spatial data.




    One of the primary growth factors propelling the geospatial analytics market is the rapid proliferation of advanced sensor technologies and the exponential increase in spatial data generation. The widespread deployment of Internet of Things (IoT) devices, satellites, drones, and mobile sensors is generating vast volumes of geospatial data, which organizations are leveraging to enhance decision-making processes. Additionally, the integration of real-time data streams with sophisticated analytics platforms is enabling businesses and governments to monitor, predict, and respond to dynamic environmental and operational changes with unprecedented accuracy and speed. This trend is particularly evident in sectors such as urban planning, disaster management, and logistics, where location intelligence is critical for optimizing resources and improving outcomes.




    Another significant driver of the geospatial analytics market is the growing emphasis on smart city development and infrastructure modernization worldwide. Governments and municipal authorities are increasingly investing in geospatial technologies to support urban planning, infrastructure management, and public safety initiatives. The ability to visualize, analyze, and simulate spatial data is enabling more effective land use planning, traffic management, and utility monitoring, thereby enhancing the quality of urban life. Furthermore, the integration of geospatial analytics with other emerging technologies, such as artificial intelligence and machine learning, is unlocking new possibilities for predictive modeling and scenario analysis, further boosting market growth.




    The increasing adoption of cloud-based geospatial analytics platforms is also a crucial factor contributing to market expansion. Cloud deployment offers significant advantages in terms of scalability, cost-efficiency, and accessibility, allowing organizations of all sizes to leverage advanced spatial analytics without the need for substantial upfront investments in hardware and infrastructure. This democratization of geospatial analytics is particularly beneficial for small and medium enterprises (SMEs), which can now access powerful tools for location intelligence, supply chain optimization, and risk management. Moreover, the cloud model facilitates seamless integration with other enterprise applications and data sources, driving greater operational agility and innovation across industries.




    From a regional perspective, North America continues to dominate the geospatial analytics market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The United States remains at the forefront of technological innovation and adoption, supported by a robust ecosystem of geospatial solution providers, research institutions, and government agencies. Meanwhile, Asia Pacific is witnessing the fastest growth, driven by rapid urbanization, infrastructure development, and increasing investments in smart city projects across countries such as China, India, and Japan. These regional dynamics underscore the global nature of geospatial analytics adoption and the diverse opportunities for market participants worldwide.





    Component Analysis



    The geospatial analytics market by component is segmented into software, hardware, and services, each playing a distinct yet interconnected role in the value chain. The software segment r

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GeoPlatform ArcGIS Online (2024). GEOSPATIAL DATA Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts [Dataset]. https://hub.arcgis.com/documents/c0cef9e4901143cbb9f15ddbb49ca3b4

Data from: GEOSPATIAL DATA Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts

Related Article
Explore at:
Dataset updated
Jun 11, 2024
Dataset authored and provided by
GeoPlatform ArcGIS Online
Description

Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts The federal government collects, maintains, and uses geospatial information—data linked to specific geographic locations—to help support varied missions, including national security and natural resources conservation. To coordinate geospatial activities, in 1994 the President issued an executive order to develop a National Spatial Data Infrastructure—a framework for coordination that includes standards, data themes, and a clearinghouse. GAO was asked to review federal and state coordination of geospatial data. GAO’s objectives were to (1) describe the geospatial data that selected federal agencies and states use and how much is spent on geospatial data; (2) assess progress in establishing the National Spatial Data Infrastructure; and (3) determine whether selected federal agencies and states invest in duplicative geospatial data. To do so, GAO identified federal and state uses of geospatial data; evaluated available cost data from 2013 to 2015; assessed FGDC’s and selected agencies’ efforts to establish the infrastructure; and analyzed federal and state datasets to identify duplication. What GAO Found Federal agencies and state governments use a variety of geospatial datasets to support their missions. For example, after Hurricane Sandy in 2012, the Federal Emergency Management Agency used geospatial data to identify 44,000 households that were damaged and inaccessible and reported that, as a result, it was able to provide expedited assistance to area residents. Federal agencies report spending billions of dollars on geospatial investments; however, the estimates are understated because agencies do not always track geospatial investments. For example, these estimates do not include billions of dollars spent on earth-observing satellites that produce volumes of geospatial data. The Federal Geographic Data Committee (FGDC) and the Office of Management and Budget (OMB) have started an initiative to have agencies identify and report annually on geospatial-related investments as part of the fiscal year 2017 budget process. FGDC and selected federal agencies have made progress in implementing their responsibilities for the National Spatial Data Infrastructure as outlined in OMB guidance; however, critical items remain incomplete. For example, the committee established a clearinghouse for records on geospatial data, but the clearinghouse lacks an effective search capability and performance monitoring. FGDC also initiated plans and activities for coordinating with state governments on the collection of geospatial data; however, state officials GAO contacted are generally not satisfied with the committee’s efforts to coordinate with them. Among other reasons, they feel that the committee is focused on a federal perspective rather than a national one, and that state recommendations are often ignored. In addition, selected agencies have made limited progress in their own strategic planning efforts and in using the clearinghouse to register their data to ensure they do not invest in duplicative data. For example, 8 of the committee’s 32 member agencies have begun to register their data on the clearinghouse, and they have registered 59 percent of the geospatial data they deemed critical. Part of the reason that agencies are not fulfilling their responsibilities is that OMB has not made it a priority to oversee these efforts. Until OMB ensures that FGDC and federal agencies fully implement their responsibilities, the vision of improving the coordination of geospatial information and reducing duplicative investments will not be fully realized. OMB guidance calls for agencies to eliminate duplication, avoid redundant expenditures, and improve the efficiency and effectiveness of the sharing and dissemination of geospatial data. However, some data are collected multiple times by federal, state, and local entities, resulting in duplication in effort and resources. A new initiative to create a national address database could potentially result in significant savings for federal, state, and local governments. However, agencies face challenges in effectively coordinating address data collection efforts, including statutory restrictions on sharing certain federal address data. Until there is effective coordination across the National Spatial Data Infrastructure, there will continue to be duplicative efforts to obtain and maintain these data at every level of government.https://www.gao.gov/assets/d15193.pdfWhat GAO Recommends GAO suggests that Congress consider assessing statutory limitations on address data to foster progress toward a national address database. GAO also recommends that OMB improve its oversight of FGDC and federal agency initiatives, and that FGDC and selected agencies fully implement initiatives. The agencies generally agreed with the recommendations and identified plans to implement them.

Search
Clear search
Close search
Google apps
Main menu