Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterLearn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets
Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.
Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.
airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).windvectors.csv, annual-precip.json).This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.
| Dataset | File | Size | Format | License | Description | Key Fields / Join Info |
|---|---|---|---|---|---|---|
| US Map (1:10m) | us-10m.json | 627 KB | TopoJSON | CC-BY-4.0 | US state and county boundaries. Contains states and counties objects. Ideal for choropleths. | id (FIPS code) property on geometries |
| World Map (1:110m) | world-110m.json | 117 KB | TopoJSON | CC-BY-4.0 | World country boundaries. Contains countries object. Suitable for world-scale viz. | id property on geometries |
| London Boroughs | londonBoroughs.json | 14 KB | TopoJSON | CC-BY-4.0 | London borough boundaries. | properties.BOROUGHN (name) |
| London Centroids | londonCentroids.json | 2 KB | GeoJSON | CC-BY-4.0 | Center points for London boroughs. | properties.id, properties.name |
| London Tube Lines | londonTubeLines.json | 78 KB | GeoJSON | CC-BY-4.0 | London Underground network lines. | properties.name, properties.color |
| Dataset | File | Size | Format | License | Description | Key Fields / Join Info |
|---|---|---|---|---|---|---|
| US Airports | airports.csv | 205 KB | CSV | Public Domain | US airports with codes and coordinates. | iata, state, `l... |
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Using the National Vegetation Classification System (NVCS) developed by Natureserve, with additional classes and modifiers, overstory vegetation communities for each park were interpreted from stereo color infrared aerial photographs using manual interpretation methods. Using a minimum mapping unit of 0.5 hectares (MMU = 0.5 ha), polygons representing areas of relatively uniform vegetation were delineated and annotated on clear plastic overlays registered to the aerial photographs. Polygons were labeled according to the dominant vegetation community. Where the polygons were not uniform, second and third vegetation classes were added. Further, a number of modifier codes were employed to indicate important aspects of the polygon that could be interpreted from the photograph (for example, burn condition). The polygons on the plastic overlays were then corrected using photogrammetric procedures and converted to vector format for use in creating a geographic information system (GIS) database for each park. In addition, high resolution color orthophotographs were created from the original aerial photographs for use in the GIS. Upon completion of the GIS database (including vegetation, orthophotos and updated roads and hydrology layers), both hardcopy and softcopy maps were produced for delivery. Metadata for each database includes a description of the vegetation classification system used for each park, summary statistics and documentation of the sources, procedures and spatial accuracies of the data. At the time of this writing, an accuracy assessment of the vegetation mapping has not been performed for most of these parks.
Facebook
Twitter
According to our latest research, the global geospatial data platform market size reached USD 108.5 billion in 2024, demonstrating robust expansion driven by digital transformation and increasing demand for location-based analytics. The market is projected to grow at a CAGR of 13.7% from 2025 to 2033, reaching a forecasted value of USD 341.2 billion by 2033. This remarkable growth is attributed to the rising integration of geospatial technologies across sectors such as urban planning, disaster management, transportation, and agriculture, alongside ongoing advancements in cloud computing and artificial intelligence that are reshaping how spatial data is collected, processed, and utilized.
One of the primary growth factors fueling the geospatial data platform market is the escalating adoption of smart city initiatives globally. Urbanization has compelled governments and municipalities to seek innovative solutions for infrastructure management, resource allocation, and public safety, all of which heavily rely on real-time geospatial data. The proliferation of Internet of Things (IoT) devices and sensors has further enriched the data ecosystem, enabling more granular and actionable insights. As cities become more connected and data-driven, the need for robust geospatial platforms that can aggregate, analyze, and visualize complex datasets is becoming indispensable, driving both public and private sector investments in this technology.
Another significant driver is the increasing frequency and intensity of natural disasters, which has heightened the reliance on geospatial data platforms for disaster management and mitigation. Accurate geospatial intelligence is critical for early warning systems, emergency response planning, and post-disaster recovery. Governments, humanitarian agencies, and insurance companies are leveraging these platforms to enhance situational awareness, optimize resource deployment, and minimize losses. The integration of satellite imagery, drone data, and advanced analytics within geospatial platforms enables rapid assessment of affected areas, improving the efficacy of relief operations and long-term resilience planning.
The expansion of the geospatial data platform market is also being propelled by the transformation of industries such as agriculture, utilities, and transportation. Precision agriculture, for example, utilizes spatial data to optimize crop yields, monitor soil health, and manage water resources efficiently. Utilities are adopting geospatial solutions for asset management, outage tracking, and network optimization, while the transportation and logistics sector is leveraging these platforms for route planning, fleet management, and supply chain visibility. The convergence of artificial intelligence, machine learning, and big data analytics with geospatial data platforms is unlocking new levels of operational efficiency and strategic decision-making across these industries.
From a regional perspective, North America continues to dominate the geospatial data platform market due to its advanced technological infrastructure, strong presence of leading market players, and substantial government investments in geospatial intelligence. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid urbanization, expanding infrastructure projects, and increasing adoption of geospatial technologies in emerging economies such as China and India. Europe remains a significant market, supported by regulatory mandates for spatial data sharing and the emphasis on sustainability and environmental monitoring. Latin America and the Middle East & Africa are also experiencing steady growth, albeit from a smaller base, as digital transformation initiatives gain momentum across diverse sectors.
The emergence of the Spatial Computing Platform is revolutionizing how geospatial data is processed and utilized. This platform integrates spatial computing with geospatial technologies, enabling more immersive and interactive data visualization. By leveraging augmented reality (AR) and virtual reality (VR), spatial computing platforms allow users to experience geospatial data in three dimensions, providing a deeper understanding of spatial relationships and patterns. This innovation is particularly beneficial in fields such as urban plannin
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GDAL/OGR libraries are open-source, geo-spatial libraries that work with a wide range of raster and vector data sources. One of many impressive features of the GDAL/OGR libraries is the ViRTual (VRT) format. It is an XML format description of how to transform raster or vector data sources on the fly into a new dataset. The transformations include: mosaicking, re-projection, look-up table (raster), change data type (raster), and SQL SELECT command (vector). VRTs can be used by GDAL/OGR functions and utilities as if they were an original source, even allowing for chaining of functionality, for example: have a VRT mosaic hundreds of VRTs that use look-up tables to transform original GeoTiff files. We used the VRT format for the presentation of hydrologic model results, allowing for thousands of small VRT files representing all components of the monthly water balance to be transformations of a single land cover GeoTiff file.
Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Managing 245 million acres of land and 700 million acres of mineral estate is a big task. The BLM recognizes that geospatial information is a critical tool for managing public lands. We’ve already made great strides in creating national datasets, supporting almost every program in the Bureau. The BLM has adopted a ground-up approach to managing public lands, and the geospatial program is providing the structure and tools to accomplish this strategy. We manage spatial data to support multiple activities at varying scales.
The BLM's geospatial strategy focuses on collection, organization, and use of baseline resource management data, like fenceline and transportation data and enhancing predictions based on geospatial data. Examples of activities that require geospatial data include planning and resource management, special status species monitoring, regional mitigation, and renewable energy projects, just to name a few.
An important factor in implementing our strategy is using a geographic information system (GIS) that is consistent and integrated within the Bureau and the Department of the Interior. This internal cohesion enhances the BLM's ability to partner with other Federal agencies, collaborate with State and Tribal governments, and communicate with the public.
Facebook
TwitterThe Getting Started section is your go-to guide for figuring out how to meet the minimum metadata requirements for sharing your geospatial data. These examples are designed for use with ArcGIS software, as it is the most widely used across the agency. However, they should also serve as a framework for sharing geospatial data in any format. Having good metadata makes your data easier to find, understand, and trust, ensuring effective content sharing. The usability and accessibility of our data will ultimately be enhanced by adhering to these guidelines.CalEPA’s Minimum Metadata requirements are based on the FAIR data principles and California Open Data Policy Requirements, California Open Data Publishers Handbook.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MCGD_Data_V2.2 contains all the data that we have collected on locations in modern China, plus a number of locations outside of China that we encounter frequently in historical sources on China. All further updates will appear under the name "MCGD_Data" with a time stamp (e.g., MCGD_Data2023-06-21)
You can also have access to this dataset and all the datasets that the ENP-China makes available on GitLab: https://gitlab.com/enpchina/IndexesEnp
Altogether there are 464,970 entries. The data include the name of locations and their variants in Chinese, pinyin, and any recorded transliteration; the name of the province in Chinese and in pinyin; Province ID; the latitude and longitude; the Name ID and Location ID, and NameID_Legacy. The Name IDs all start with H followed by seven digits. This is the internal ID system of MCGD (the NameID_Legacy column records the Name IDs in their original format depending on the source). Locations IDs that start with "DH" are data points extracted from China Historical GIS (Harvard University); those that start with "D" are locations extracted from the data points in Geonames; those that have only digits (8 digits) are data points we have added from various map sources.
One of the main features of the MCGD Main Dataset is the systematic collection and compilation of place names from non-Chinese language historical sources. Locations were designated in transliteration systems that are hardly comprehensible today, which makes it very difficult to find the actual locations they correspond to. This dataset allows for the conversion from these obsolete transliterations to the current names and geocoordinates.
From June 2021 onward, we have adopted a different file naming system to keep track of versions. From MCGD_Data_V1 we have moved to MCGD_Data_V2. In June 2022, we introduced time stamps, which result in the following naming convention: MCGD_Data_YYYY.MM.DD.
UPDATES
MCGD_Data2025_02_28 includes a major change with the duplication of all the locations listed under Beijing, Shanghai, Tianjin, and Chongqing (北京, 上海, 天津, 重慶) and their listing under the name of the provinces to which they belonge origially before the creation of the four special municipalities after 1949. This is meant to facilitate the matching of data from historical sources. Each location has a unique NameID. Altogether there are 472,818 entries
MCGD_Data2025_02_27 inclues an update on locations extracted from Minguo zhengfu ge yuanhui keyuan yishang zhiyuanlu 國民政府各院部會科員以上職員錄 (Directory of staff members and above in the ministries and committees of the National Government). Nanjing: Guomin zhengfu wenguanchu yinzhuju 國民政府文官處印鑄局國民政府文官處印鑄局, 1944). We also made corrections in the Prov_Py and Prov_Zh columns as there were some misalignments between the pinyin name and the name in Chines characters. The file now includes 465,128 entries.
MCGD_Data2024_03_23 includes an update on locations in Taiwan from the Asia Directories. Altogether there are 465,603 entries (of which 187 place names without geocoordinates, labelled in the Lat Long columns as "Unknown").
MCGD_Data2023.12.22 contains all the data that we have collected on locations in China, whatever the period. Altogether there are 465,603 entries (of which 187 place names without geocoordinates, labelled in the Lat Long columns as "Unknown"). The dataset also includes locations outside of China for the purpose of matching such locations to the place names extracted from historical sources. For example, one may need to locate individuals born outside of China. Rather than maintaining two separate files, we made the decision to incorporate all the place names found in historical sources in the gazetteer. Such place names can easily be removed by selecting all the entries where the 'Province' data is missing.
Facebook
TwitterUnlock the power of 164M+ verified locations across 220+ countries with high-precision geospatial data. Featuring 50+ enriched attributes including coordinates, building type, and geometry. Our AI-powered dataset ensures unmatched accuracy through advanced deduplication and enrichment. With 30+ years of industry expertise, we deliver trusted, customizable data solutions for mapping, navigation, urban planning, and marketing, empowering smarter decision-making and strategic growth.
Key use cases of Geospatial data have helped our customers in several areas:
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Our final map product is a geographic information system (GIS) database of vegetation structure and composition across the Crater Lake National Park terrestrial landscape, including wetlands. The database includes photos we took at all relevé, validation, and accuracy assessment plots, as well as the plots that were done in the previous wetlands inventory. We conducted an accuracy assessment of the map by evaluating 698 stratified random accuracy assessment plots throughout the project area. We intersected these field data with the vegetation map, resulting in an overall thematic accuracy of 86.2 %. The accuracy of the Cliff, Scree & Rock Vegetation map unit was difficult to assess, as only 9% of this vegetation type was available for sampling due to lack of access. In addition, fires that occurred during the 2017 accuracy assessment field season affected our sample design and may have had a small influence on the accuracy. Our geodatabase contains the locations where particular associations are found at 600 relevé plots, 698 accuracy assessment plots, and 803 validation plots.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains example gwfvisdb files required to run the examples displayed on the GWF-VIS visualization gallery (https://gwf-vis.usask.ca/#gallery). The code associated with each visualization example contains a 'data_source' variable. This variable can be examined to see where the data is currently hosted. Users may also upload the data file on other static file servers and update the 'data_source' to replicate the visualizations.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.
One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.
Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.
Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.
Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.
Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.
The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.
Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MyGeoHub is a science gateway for researchers working with geospatial data. Based on the HUBzero cyberinfrastructure framework, it provides general-purpose software modules enabling geospatial data management, processing and visualization. Termed “GABBs” (Geospatial Data Analysis Building Blocks), these modules can be leveraged to build geospatial data driven tools with minimal programming and construct dynamic workflows chaining both local and remote tools and data sources. We will present examples of such end-to-end workflows demonstrating the underlying software building blocks that have also found use beyond the MyGeoHub gateway in other science domains.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.