The Ministry for Primary Industries (MPI) generates and acquires geospatial data. To maintain trust and confidence in the accuracy of this data, and the ability to reuse MPI has developed standards for both internal staff and external contractors. At the conclusion of any project or contract involving MPI, all data created should be provided to MPI. All data supplied to MPI must be well structured and managed to a high standard. The data must be in a format compatible with ESRI software, with all datasets named logically and clearly. If a deviation is required from the data standards please contact the contract manager.
The purpose of the Virginia Public Safety Answering Point (PSAP) and Emergency Service Boundary Geospatial Data Standard is to implement, as a Commonwealth ITRM Standard, the data file naming conventions, geometry, map projection system, common set of attributes, dataset type and specifications, and level of precision for the Virginia Public Safety Answering Point (PSAP) and Emergency Service Boundary Datasets, which will be the data source of record at the state level for these types of spatial features within the Commonwealth of Virginia.
The purpose of the Virginia Address Point Geospatial Data Standard is to implement, as a Commonwealth ITRM Standard, the data file naming conventions, geometry, map projection system, common set of attributes, dataset type and specifications, and level of precision for the Virginia Address Point Dataset, which will be the data source of record at the state level for administrative boundary spatial features within the Commonwealth of Virginia.
SDI | Data | Data Governance | News |NGA releases new data strategy to navigate digital, GEOINT revolution SPRINGFIELD, Virginia — The National Geospatial-Intelligence Agency published the agency’s data strategy Oct. 6, outlining its plans to transform and improve the way data is created, managed and shared in order to maintain dominance in the delivery of geospatial intelligence. “It is essential that we take all actions necessary to sustain our advantage in GEOINT — and that includes managing our data as a key strategic asset,’’ stated NGA Director Vice Adm. Robert Sharp in the data strategy. “With the holistic enterprise approach mapped out within this new data strategy, NGA sets forth a path for leading the way and staying ahead of our competitors.’’ The NGA Data Strategy 2021, a 28-page public document, includes both strategic goals and courses of action for the agency as it continues to chart a secure and innovative path forward while facing increasing amounts of data, risk and competition. Aligned to the agency’s Moonshot effort to “deliver trusted GEOINT with the speed, accuracy and precision required,’’ the strategy calls for the accelerated, shared and trusted use of data to help NGA better deliver on its mandates and show the way. The plan, created as a companion document to the NGA Technology Strategy published in 2020, already has played an integral role in the agency’s recent adoption of a new data governance structure to provide a coordinated framework for data policies and stewardship. The data strategy, combined with the established collaborative data governance program, guides the agency’s push to close the gap between current and future capabilities by accelerating developments in four significant focus areas: making data easily accessible, improving data reusability, improving cross-domain efficiencies and enabling next-generation GEOINT. The strategy describes four key goals being pursued by NGA to meet its mission and business needs. To achieve its desired results, the agency seeks to: — Manage data as a strategic asset: Deploy a federated enterprise data governance framework that ensures data is proactively, strategically and consistently managed while enabling agility, flexibility and innovation. Relationship to SDI'sThis reference resource provides a reference resource for SDI related activities in the intelligence community.The National Geospatial Intelligence Agency is a Federal participating organization in the Federal Geographic Data Committee. A Senior NGA Representative is a member of the FGDC Executive Committee A Senior NGA Representative is appointed by the Secretary of Interior to the National Geospatial Advisory Committee established in the Geospatial Data Act of 2018 "The head of each covered agency and the Director of the National Geospatial-Intelligence Agency shall each designate a representative of their respective agency to serve as a member of the Committee."The Geospatial Data Act of 2018 U.S.C 2804 Geospatial Standards, requires FGDC to "shall include universal data standards that shall be acceptable for the purposes of declassified intelligence community data"Additional ResourcesFederal Geographic Data CommitteeNational Geospatial Advisory CommitteeNational Geospatial Intelligence Agency National Geospatial Intelligence Agency Products and ServicesFGDC Standards
Overview of the Water Development GIS Standards.
The purpose of the Virginia Administrative Boundary Geospatial Data Standard is to implement, as a Commonwealth ITRM Standard, the data file naming conventions, geometry, map projection system, common set of attributes, dataset type and specifications, and level of precision for the Virginia Administrative Boundaries Dataset, which will be the data source of record at the state level for administrative boundary spatial features within the Commonwealth of Virginia.
{{description}}
The Vegetation Technical Working Group (VTWG) of the Alaska Geospatial Council developed the Minimum Standards for Field Observation of Vegetation and Related Properties Version 1.1 (August 2022) to help ensure that vegetation data collected as part of independent vegetation survey, mapping, monitoring, and classification projects can support the production of a statewide vegetation map from quantitative data and the continued development of the U.S. National Vegetation Classification.
{{description}}
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is the current version of Oregon's Open Data Technical Standards Manual. The Technical Standards Manual provides guidelines for release of publishable data on the web portal at data.oregon.gov, and requirements for agencies publishing open spatial data in compliance with the State’s Open Data Standard.
Metadata & Projection Standards, Data Development Methods, State Engineer's Office E-Permit Instructions, Permit conversion Tool (Version 2, 2019)
Standard Operating Procedures (SOPs) of the PEP Central Data Hub. SOPs include components such has data criteria, and the process of uploading data to the hub.
Bear River Data Model GIS Standards Training Webinar (Nov. 15, 2017)
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A current, accurate spatial representation of all historic properties listed on the National Register of Historic Places is of interest to Federal agencies, the National Park Service, State Historic and Tribal Historic Preservation Offices, local government and certified local governments, consultants, academia, and the interested public. This interest stems from the regulatory processes of managing cultural resources that are consistent with the National Historic Preservation Act as Amended (NHPA), the National Environmental Policy Act as Amended, the Archaeological Resources Protection Act, and other laws related to cultural resources. The regulations promulgating these laws require the use of spatial data in support of various decisions and actions related to cultural resource management.The information contained in the feature attribute tables for this dataset is not descriptive. Rather the tables document how the data was created, where it came from, who created the data, what map parameters were used e.g. source scale, source accuracy, source coordinate system etc. Also included is information on the name of the resource, status of the resource i.e. does it still exist, is it restricted and what if any constraints are associated with the resource. Please note that each historic property listed on the National Register has its own nominating history and therefore location information collected in the nominating process is different from one property to another. Therefore metadata has been created for each listed historic property to inform the potential user of the history or lineage of the spatial information associated with the historic property. Locations associated with restricted National Register of Historic Places properties are not included in this GeoDatabase and must be requested from the National Park Service, National Register Program.The metadata in the feature attribute table are compliant with the National Park Serviceâ s Cultural Resource Spatial Data Transfer Standards. These standards were created to facilitate the exchange of spatial data within a variety of contexts, particularly Sections 106 and 110 of NHPA as well as in the context of disaster recovery events. Often locations of National Register listed properties are needed in these situations. The National Register Geo-spatial dataset is organized as a geo-database with feature class definitions based on the National Registerâ s Resource Type designations i.e. historic buildings, historic districts, historic structures, historic objects, and historic sites. The definitions of these types can be found in National Register Bulletin 16A and in the metadata statements for each feature class.
Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts The federal government collects, maintains, and uses geospatial information—data linked to specific geographic locations—to help support varied missions, including national security and natural resources conservation. To coordinate geospatial activities, in 1994 the President issued an executive order to develop a National Spatial Data Infrastructure—a framework for coordination that includes standards, data themes, and a clearinghouse. GAO was asked to review federal and state coordination of geospatial data. GAO’s objectives were to (1) describe the geospatial data that selected federal agencies and states use and how much is spent on geospatial data; (2) assess progress in establishing the National Spatial Data Infrastructure; and (3) determine whether selected federal agencies and states invest in duplicative geospatial data. To do so, GAO identified federal and state uses of geospatial data; evaluated available cost data from 2013 to 2015; assessed FGDC’s and selected agencies’ efforts to establish the infrastructure; and analyzed federal and state datasets to identify duplication. What GAO Found Federal agencies and state governments use a variety of geospatial datasets to support their missions. For example, after Hurricane Sandy in 2012, the Federal Emergency Management Agency used geospatial data to identify 44,000 households that were damaged and inaccessible and reported that, as a result, it was able to provide expedited assistance to area residents. Federal agencies report spending billions of dollars on geospatial investments; however, the estimates are understated because agencies do not always track geospatial investments. For example, these estimates do not include billions of dollars spent on earth-observing satellites that produce volumes of geospatial data. The Federal Geographic Data Committee (FGDC) and the Office of Management and Budget (OMB) have started an initiative to have agencies identify and report annually on geospatial-related investments as part of the fiscal year 2017 budget process. FGDC and selected federal agencies have made progress in implementing their responsibilities for the National Spatial Data Infrastructure as outlined in OMB guidance; however, critical items remain incomplete. For example, the committee established a clearinghouse for records on geospatial data, but the clearinghouse lacks an effective search capability and performance monitoring. FGDC also initiated plans and activities for coordinating with state governments on the collection of geospatial data; however, state officials GAO contacted are generally not satisfied with the committee’s efforts to coordinate with them. Among other reasons, they feel that the committee is focused on a federal perspective rather than a national one, and that state recommendations are often ignored. In addition, selected agencies have made limited progress in their own strategic planning efforts and in using the clearinghouse to register their data to ensure they do not invest in duplicative data. For example, 8 of the committee’s 32 member agencies have begun to register their data on the clearinghouse, and they have registered 59 percent of the geospatial data they deemed critical. Part of the reason that agencies are not fulfilling their responsibilities is that OMB has not made it a priority to oversee these efforts. Until OMB ensures that FGDC and federal agencies fully implement their responsibilities, the vision of improving the coordination of geospatial information and reducing duplicative investments will not be fully realized. OMB guidance calls for agencies to eliminate duplication, avoid redundant expenditures, and improve the efficiency and effectiveness of the sharing and dissemination of geospatial data. However, some data are collected multiple times by federal, state, and local entities, resulting in duplication in effort and resources. A new initiative to create a national address database could potentially result in significant savings for federal, state, and local governments. However, agencies face challenges in effectively coordinating address data collection efforts, including statutory restrictions on sharing certain federal address data. Until there is effective coordination across the National Spatial Data Infrastructure, there will continue to be duplicative efforts to obtain and maintain these data at every level of government.https://www.gao.gov/assets/d15193.pdfWhat GAO Recommends GAO suggests that Congress consider assessing statutory limitations on address data to foster progress toward a national address database. GAO also recommends that OMB improve its oversight of FGDC and federal agency initiatives, and that FGDC and selected agencies fully implement initiatives. The agencies generally agreed with the recommendations and identified plans to implement them.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geospatial Analytics Market Size 2025-2029
The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.
What will be the Size of the Geospatial Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health.
Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.
How is this Geospatial Analytics Industry segmented?
The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)
By Technology Insights
The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, data storytelling, geospati
Use this guide to find information on Tempe data policy and standards.Open Data PolicyEthical Artificial Intelligence (AI) PolicyEvaluation PolicyExpedited Data Sharing PolicyData Sharing Agreement (General)Data Sharing Agreement (GIS)Data Quality Standard and ChecklistDisaggregated Data StandardsData and Analytics Service Standard
This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific production or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys), and the Bureau of Census 2015 Cartographic State Boundaries. The Entity-Attribute section of this metadata describes these components in greater detail.
Please note that the data on this site, although published at regular intervals, may not be the most current PLSS data that is available from the BLM. Updates to the PLSS data at the BLM State Offices may have occurred since this data was published. To ensure users have the most current data, please refer to the links provided in the PLSS CadNSDI Data Set Availability accessible here: https:gis.blm.govEGISDownloadDocsPLSS_CadNSDI_Data_Set_Availability.pdf or contact the BLM PLSS Data Set Manager.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
The Ministry for Primary Industries (MPI) generates and acquires geospatial data. To maintain trust and confidence in the accuracy of this data, and the ability to reuse MPI has developed standards for both internal staff and external contractors. At the conclusion of any project or contract involving MPI, all data created should be provided to MPI. All data supplied to MPI must be well structured and managed to a high standard. The data must be in a format compatible with ESRI software, with all datasets named logically and clearly. If a deviation is required from the data standards please contact the contract manager.