100+ datasets found
  1. Geospatial Data Pack for Visualization

    • kaggle.com
    zip
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vega Datasets (2025). Geospatial Data Pack for Visualization [Dataset]. https://www.kaggle.com/datasets/vega-datasets/geospatial-data-pack
    Explore at:
    zip(1422109 bytes)Available download formats
    Dataset updated
    Oct 21, 2025
    Dataset authored and provided by
    Vega Datasets
    Description

    Geospatial Data Pack for Visualization 🗺️

    Learn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets

    Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.

    Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.

    Why Use This Dataset? 🤔

    • Comprehensive Geospatial Types: Explore a variety of core geospatial data models:
      • Vector Data: Includes points (like airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).
      • Raster-like Data: Work with gridded datasets (like windvectors.csv, annual-precip.json).
    • Diverse Formats: Gain experience with standard and efficient geospatial formats like GeoJSON (see Table 1, 2, 4), compressed TopoJSON (see Table 1), and plain CSV/TSV (see Table 2, 3, 4) for point data and attribute tables ready for joining.
    • Multi-Scale Coverage: Practice visualization across different geographic scales, from global and national (Table 1, 4) down to the city level (Table 1).
    • Rich Thematic Mapping: Includes multiple datasets (Table 3) specifically designed for joining attributes to geographic boundaries (like states or counties from Table 1) to create insightful choropleth maps.
    • Ready-to-Use & Example-Driven: Cleaned datasets tightly integrated with 31+ official examples (see Appendix) from Altair, Vega-Lite, and Vega, allowing you to immediately practice techniques like projections, point maps, network maps, and interactive displays.
    • Python Friendly: Works seamlessly with essential Python libraries like Altair (which can directly read TopoJSON/GeoJSON), Pandas, and GeoPandas, fitting perfectly into the Kaggle notebook environment.

    Table of Contents

    Dataset Inventory 🗂️

    This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.

    1. BASE MAP BOUNDARIES (Topological Data)

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Map (1:10m)us-10m.json627 KBTopoJSONCC-BY-4.0US state and county boundaries. Contains states and counties objects. Ideal for choropleths.id (FIPS code) property on geometries
    World Map (1:110m)world-110m.json117 KBTopoJSONCC-BY-4.0World country boundaries. Contains countries object. Suitable for world-scale viz.id property on geometries
    London BoroughslondonBoroughs.json14 KBTopoJSONCC-BY-4.0London borough boundaries.properties.BOROUGHN (name)
    London CentroidslondonCentroids.json2 KBGeoJSONCC-BY-4.0Center points for London boroughs.properties.id, properties.name
    London Tube LineslondonTubeLines.json78 KBGeoJSONCC-BY-4.0London Underground network lines.properties.name, properties.color

    2. GEOGRAPHIC REFERENCE POINTS (Point Data) 📍

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Airportsairports.csv205 KBCSVPublic DomainUS airports with codes and coordinates.iata, state, `l...
  2. f

    VR/AR/XR Visualization of Geospatial Data from NASA GES-DISC

    • esip.figshare.com
    pdf
    Updated Jul 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zachariah Abueg; Allison Alcott; Armin Mehrabian (2023). VR/AR/XR Visualization of Geospatial Data from NASA GES-DISC [Dataset]. http://doi.org/10.6084/m9.figshare.23691930.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 16, 2023
    Dataset provided by
    ESIP
    Authors
    Zachariah Abueg; Allison Alcott; Armin Mehrabian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Goddard Earth Sciences Data and Information Services Center (GES-DISC) at NASA is responsible for safeguarding and distributing invaluable Earth science data. Recognizing the critical role of satellite data visualization in immersive environments, we have embarked on a venture that explores the utilization of existing tools and technologies such as virtual reality (VR), augmented reality (AR), and extended reality (XR).

    The intention of this project is not merely to experiment, but to potentially redefine how we interact with our large data inventory. Our objective is to deepen our comprehension of data and create engaging, interactive experiences.

  3. d

    GABBs MultiSpec Online

    • search.dataone.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larry Biehl; Abdur Rahman Maud; Wei-Kang Hsu; Tsung Tai Yeh (2021). GABBs MultiSpec Online [Dataset]. https://search.dataone.org/view/sha256%3A345757ecee7728c62d49a36d29cb424657fd6a906fdca5f34beea7cdbb159ea7
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Larry Biehl; Abdur Rahman Maud; Wei-Kang Hsu; Tsung Tai Yeh
    Description

    This web app launches the MultiSpec Online tool on MyGeoHub (https://mygeohub.org) for geospatial data exploration, analysis and visualization.

  4. Dataset for the Examples on the GWF-VIS Visualization Gallery

    • figshare.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Debajyoti Mondal (2024). Dataset for the Examples on the GWF-VIS Visualization Gallery [Dataset]. http://doi.org/10.6084/m9.figshare.25717893.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Apr 29, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Debajyoti Mondal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains example gwfvisdb files required to run the examples displayed on the GWF-VIS visualization gallery (https://gwf-vis.usask.ca/#gallery). The code associated with each visualization example contains a 'data_source' variable. This variable can be examined to see where the data is currently hosted. Users may also upload the data file on other static file servers and update the 'data_source' to replicate the visualizations.

  5. Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United Kingdom, Germany, United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  6. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.

  7. r

    Geospatial Analytics Market Size & Share Report, 2035

    • rootsanalysis.com
    Updated Nov 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2025). Geospatial Analytics Market Size & Share Report, 2035 [Dataset]. https://www.rootsanalysis.com/geospatial-analytics-market
    Explore at:
    Dataset updated
    Nov 18, 2025
    Dataset authored and provided by
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Description

    The geospatial analytics market size is predicted to rise from $93.49 billion in 2024 to $362.45 billion by 2035, growing at a CAGR of 13.1% from 2024 to 2035

  8. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 26, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    France, Canada, United Kingdom, Brazil, United States, Germany
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, data storytelling, geospati

  9. w

    Global Location and Geospatial Data Management and Analytics Software Market...

    • wiseguyreports.com
    Updated Oct 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Oct 18, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20245.31(USD Billion)
    MARKET SIZE 20255.74(USD Billion)
    MARKET SIZE 203512.5(USD Billion)
    SEGMENTS COVEREDApplication, Deployment Mode, End Use, Features, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSData privacy and security concerns, Growing demand for real-time analytics, Integration with IoT technologies, Expansion of cloud-based solutions, Increased investment in GIS technologies
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDAlteryx, SAP, Pitney Bowes, Bentley Systems, Google, Microsoft, Trimble, Hexagon AB, Fugro, Mapbox, HERE Technologies, Geosoft, Siemens, Autodesk, IBM, Oracle, Esri
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased adoption of IoT technologies, Expansion of smart city initiatives, Growth of autonomous vehicle data needs, Rising demand for real-time analytics, Integration with AI and machine learning
    COMPOUND ANNUAL GROWTH RATE (CAGR) 8.1% (2025 - 2035)
  10. w

    Global Geospatial Data Service Market Research Report: By Application...

    • wiseguyreports.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Geospatial Data Service Market Research Report: By Application (Surveying, Infrastructure Development, Environmental Monitoring, Natural Resource Management, Disaster Management), By Service Type (Data Capture, Data Processing, Data Analysis, Data Visualization), By Technology (Remote Sensing, Geographic Information System, Global Positioning System, 3D Mapping), By End Use (Government, Transportation, Telecommunications, Agriculture) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/geospatial-data-service-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20244.41(USD Billion)
    MARKET SIZE 20254.83(USD Billion)
    MARKET SIZE 203512.0(USD Billion)
    SEGMENTS COVEREDApplication, Service Type, Technology, End Use, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSIncreasing demand for location analytics, Advancements in satellite technology, Growth of IoT applications, Rising need for spatial data integration, Government investments in geospatial infrastructure
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDMaxar Technologies, DigitalGlobe, Autodesk, Oracle, Neudesic, Planet Labs, Hexagon, SIIRIUS, Blue Sky Network, SAP, HERE Technologies, Trimble, Esri, Microsoft, Geosys, GeoIQ, Google
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESRemote sensing technology advancements, Increasing demand for location-based services, Integration of AI and machine learning, Smart city initiatives and urban planning, Growth in environmental monitoring and sustainability efforts
    COMPOUND ANNUAL GROWTH RATE (CAGR) 9.5% (2025 - 2035)
  11. I

    Interactive Map Creation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Interactive Map Creation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/interactive-map-creation-tools-1418201
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $7.8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of location-based services (LBS) and geographic information systems (GIS) across industries like real estate, tourism, logistics, and urban planning is a major catalyst. Businesses are increasingly leveraging interactive maps to enhance customer engagement, improve operational efficiency, and gain valuable insights from geospatial data. Furthermore, advancements in mapping technologies, including the integration of AI and machine learning for improved data analysis and visualization, are contributing to market growth. The accessibility of user-friendly tools, coupled with the decreasing cost of cloud-based solutions, is also making interactive map creation more accessible to a wider range of users, from individuals to large corporations. However, the market also faces certain challenges. Data security and privacy concerns surrounding the use of location data are paramount. The need for specialized skills and expertise to effectively utilize advanced mapping technologies may also hinder broader adoption, particularly among smaller businesses. Competition among established players like Mapbox, ArcGIS StoryMaps, and Google, alongside emerging innovative solutions, necessitates constant innovation and differentiation. Nevertheless, the overall market outlook remains positive, with continued technological advancements and rising demand for data visualization expected to propel growth in the coming years. Specific market segmentation data, while unavailable, can be reasonably inferred from existing market trends, suggesting a strong dominance of enterprise-grade solutions, but with substantial growth expected from simpler, more user-friendly tools designed for individuals and small businesses.

  12. d

    County Buddy: A Companion Dataset for Socioeconomic Data Analysis and...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vu, Colin; Andris, Clio; Baniassad, Leila (2025). County Buddy: A Companion Dataset for Socioeconomic Data Analysis and Exploration of U.S. Datasets [Dataset]. http://doi.org/10.7910/DVN/V7LNJK
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Vu, Colin; Andris, Clio; Baniassad, Leila
    Time period covered
    Jan 1, 2017 - Dec 31, 2020
    Area covered
    United States
    Description

    County Buddy is a dataset detailing the presence, count, and institutions of special populations (incarcerated individuals, college students, military personnel, and Native Americans) at the U.S. county and census tract levels. It offers geographic and demographic context to help explain variation in socio-economic indicators like life expectancy, income, and education.

  13. H

    2015 Highlights of the Geospatial Data Analysis Building Blocks Project...

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Mar 7, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol Song (2016). 2015 Highlights of the Geospatial Data Analysis Building Blocks Project (GABBs) [Dataset]. https://www.hydroshare.org/resource/cc88c814416b45189c781eb86fae2e63
    Explore at:
    zip(5.9 MB)Available download formats
    Dataset updated
    Mar 7, 2016
    Dataset provided by
    HydroShare
    Authors
    Carol Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gabbs
    Description

    The NSF-funded DIBBS project, Geospatial Data Analysis Building Blocks, focuses on geospatial data management, analysis, modeling and visualization. This flyer describes the highlights of the project as of December 2015, and provides the project URL and other relevant information.

  14. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    France, United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  15. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +1more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  17. d

    Waterhackweek 2019 Cyberseminar: Visualization of water datasets

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Cannistra (2021). Waterhackweek 2019 Cyberseminar: Visualization of water datasets [Dataset]. https://search.dataone.org/view/sha256%3Af996a202e4fa415e4f578c16e1ee3f3425c1e64bbdee3fd274cb5deb21b6686a
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Anthony Cannistra
    Time period covered
    Jan 31, 2019
    Description

    Geospatial data, especially those in hydrology, are uniquely suited to compelling and practical visualization. Maps, in particular, are not only tools for developing an initial understanding of a new set of data but are also used widely to disseminate analytical results in a native manner. This seminar will develop both a high-level understanding of the practice of visualizing geospatial data and practical skills in Python for easily creating geospatial visualizations. In particular, we will discuss the importance of (and historical precedent for) creating a visual narrative for the dissemination of information, concerns regarding cartographic projections, a brief overview of common geospatial data types, and provide live demonstrations of common open-source geospatial data visualization packages in Python using hydrologic datasets.

  18. G

    Geographic Information Systems Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information Systems Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-systems-platform-1974602
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information Systems (GIS) platform market is poised for substantial growth, projected to reach an estimated market size of $XXX million in 2025, with a Compound Annual Growth Rate (CAGR) of XX% expected throughout the forecast period of 2025-2033. This robust expansion is primarily driven by the increasing demand for sophisticated data visualization, spatial analysis, and location-based services across a multitude of sectors. The government and utilities sector is a significant contributor, leveraging GIS for infrastructure management, urban planning, resource allocation, and emergency response. Commercial applications are also rapidly adopting GIS for customer analytics, supply chain optimization, real estate development, and targeted marketing. The proliferation of web-enabled GIS solutions, including Web Map Services, is democratizing access to geospatial data and tools, fostering innovation and wider adoption beyond traditional GIS professionals. Desktop GIS continues to hold its ground for complex analytical tasks, but the trend towards cloud-based and mobile GIS solutions is accelerating, offering greater flexibility and scalability. Key trends shaping the GIS platform market include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for advanced spatial analytics and predictive modeling, the growing importance of real-time data processing and streaming, and the rise of open-source GIS solutions challenging established players. The increasing availability of high-resolution satellite imagery and IoT sensor data further fuels the need for powerful GIS platforms. However, certain restraints might temper this growth, such as the initial cost of implementation for some advanced solutions, a potential shortage of skilled GIS professionals, and data privacy concerns associated with extensive location data collection. The market is characterized by intense competition among established global players and emerging innovators, all vying to capture market share by offering comprehensive, user-friendly, and technologically advanced GIS solutions. This comprehensive report delves into the dynamic Geographic Information Systems (GIS) Platform market, providing in-depth analysis and forecasts from 2019 to 2033, with a base year of 2025. The study meticulously examines market concentration, key trends, regional dominance, product insights, and the driving forces and challenges shaping this vital industry. We project the market to reach values in the tens of millions and hundreds of millions of dollars across various segments.

  19. V

    Geospatial

    • data.virginia.gov
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Data Officer (2025). Geospatial [Dataset]. https://data.virginia.gov/dataset/geospatial
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Office of the Chief Data Officer
    Description

    The Geospatial Data Act of 2018 (GDA) serves as the Federal foundation for geospatial data management and sharing with the public. The GDA defines geospatial data as information tied to a location on Earth, including geographic location identifiers and characteristics of natural or constructed features and boundaries. This is important for HHS work with disasters, emergencies, preparedness, and responses that necessitate quality data like remote sensing, land surveying, or mapping. Here, you can explore data maps, vector datasets (points, lines, polygons), raster datasets (images, aerial photographs), and other HHS geospatial data. Explore HHS geospatial data assets below. To develop your own maps and geospatial visualizations, create a free account (sign in required) on HealthData.gov.

  20. D

    GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Vega Datasets (2025). Geospatial Data Pack for Visualization [Dataset]. https://www.kaggle.com/datasets/vega-datasets/geospatial-data-pack
Organization logo

Geospatial Data Pack for Visualization

Learn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets

Explore at:
zip(1422109 bytes)Available download formats
Dataset updated
Oct 21, 2025
Dataset authored and provided by
Vega Datasets
Description

Geospatial Data Pack for Visualization 🗺️

Learn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets

Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.

Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.

Why Use This Dataset? 🤔

  • Comprehensive Geospatial Types: Explore a variety of core geospatial data models:
    • Vector Data: Includes points (like airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).
    • Raster-like Data: Work with gridded datasets (like windvectors.csv, annual-precip.json).
  • Diverse Formats: Gain experience with standard and efficient geospatial formats like GeoJSON (see Table 1, 2, 4), compressed TopoJSON (see Table 1), and plain CSV/TSV (see Table 2, 3, 4) for point data and attribute tables ready for joining.
  • Multi-Scale Coverage: Practice visualization across different geographic scales, from global and national (Table 1, 4) down to the city level (Table 1).
  • Rich Thematic Mapping: Includes multiple datasets (Table 3) specifically designed for joining attributes to geographic boundaries (like states or counties from Table 1) to create insightful choropleth maps.
  • Ready-to-Use & Example-Driven: Cleaned datasets tightly integrated with 31+ official examples (see Appendix) from Altair, Vega-Lite, and Vega, allowing you to immediately practice techniques like projections, point maps, network maps, and interactive displays.
  • Python Friendly: Works seamlessly with essential Python libraries like Altair (which can directly read TopoJSON/GeoJSON), Pandas, and GeoPandas, fitting perfectly into the Kaggle notebook environment.

Table of Contents

Dataset Inventory 🗂️

This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.

1. BASE MAP BOUNDARIES (Topological Data)

DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
US Map (1:10m)us-10m.json627 KBTopoJSONCC-BY-4.0US state and county boundaries. Contains states and counties objects. Ideal for choropleths.id (FIPS code) property on geometries
World Map (1:110m)world-110m.json117 KBTopoJSONCC-BY-4.0World country boundaries. Contains countries object. Suitable for world-scale viz.id property on geometries
London BoroughslondonBoroughs.json14 KBTopoJSONCC-BY-4.0London borough boundaries.properties.BOROUGHN (name)
London CentroidslondonCentroids.json2 KBGeoJSONCC-BY-4.0Center points for London boroughs.properties.id, properties.name
London Tube LineslondonTubeLines.json78 KBGeoJSONCC-BY-4.0London Underground network lines.properties.name, properties.color

2. GEOGRAPHIC REFERENCE POINTS (Point Data) 📍

DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
US Airportsairports.csv205 KBCSVPublic DomainUS airports with codes and coordinates.iata, state, `l...
Search
Clear search
Close search
Google apps
Main menu