Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Geographic Information System market size will be USD 10215.6 million in 2024. It will expand at a compound annual growth rate (CAGR) of 9.20% from 2024 to 2031.
North America held the major market share for more than 40% of the global revenue with a market size of USD 4086.24 million in 2024 and will grow at a compound annual growth rate (CAGR) of 7.4% from 2024 to 2031.
Europe accounted for a market share of over 30% of the global revenue with a market size of USD 3064.68 million.
Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 2349.59 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.2% from 2024 to 2031.
Latin America had a market share of more than 5% of the global revenue with a market size of USD 510.78 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.6% from 2024 to 2031.
Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 204.31 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.9% from 2024 to 2031.
The government category is the fastest growing segment of the Geographic Information System industry
Market Dynamics of Geographic Information System Market
Key Drivers for Geographic Information System Market
Increased Demand for Location-Based Services to Boost Market Growth
The market for geographic information systems (GIS) is expanding due in large part to the growing demand for location-based services (LBS). Retail, transportation, and logistics are just a few of the businesses that are adopting LBS applications like navigation, geotagging, and real-time tracking. Businesses use GIS-enabled LBS to improve operational efficiency, optimize delivery routes, and monitor customer behavior. Furthermore, GIS-powered LBS is now more widely available because of developments in smartphone technology and the growth of IoT devices. As a result of urbanization and smart city projects, governments and organizations are using GIS to manage resources and build cities based on location. In the upcoming years, the GIS market is expected to develop dramatically due to this increased reliance on LBS.
Advancements in Geospatial Technology to Drive Market Growth
The Geographic Information System (GIS) industry is expanding significantly due to advancements in geospatial technologies. Technologies like LiDAR, remote sensing, and 3D mapping have completely changed how spatial data is collected, processed, and shown. More accurate and useful insights are made possible by improved real-time data processing and AI integration capabilities, which help sectors including disaster relief, agriculture, and urban planning. GIS applications are being further transformed by emerging technologies like virtual reality (VR) and augmented reality (AR), which enable immersive data visualization and better decision-making. These developments in technology, along with the falling prices of geospatial tools, are increasing the use of GIS in various industries and driving global market expansion.
Restraint Factor for the Geographic Information System Market
Data Privacy and Security Concerns Will Limit Market Growth
Data security and privacy issues are major barriers to the Geographic Information System (GIS) market's expansion. GIS applications frequently incorporate sensitive location-based data, including information on natural resources, infrastructure design, and human movements. Potential data breaches, illegal access, and abuse present serious privacy and cybersecurity issues. When strong data protection measures are not in place, governments and organizations are reluctant to employ GIS systems. Variable international data privacy laws, like the GDPR in Europe, also make the implementation of GIS systems more challenging. For these issues to be resolved and for GIS technologies to be widely adopted, it is imperative that geographical data be processed, stored, and shared securely.
Impact of Covid-19 on the Geographic Information System Market
The Geographic Information System (GIS) business was greatly impacted by the COVID-19 epidemic, which led to a rise in adoption across a number of industries. Governments and medical institutions use GIS to plan vaccination campaigns, allocate resources, and follow the spread of viruses in real-time. GIS...
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
As of 2023, the Software Geographic Information Systems (GIS) market size was valued at approximately USD 9.1 billion and is projected to reach around USD 18.6 billion by 2032, reflecting a robust Compound Annual Growth Rate (CAGR) of 8.5%. This remarkable growth is primarily driven by the increasing demand for spatial data across various industries, coupled with the advancement in geospatial technologies. The growing integration of GIS with mainstream business operations for better decision-making and the surge in urbanization and smart city initiatives are significant factors propelling the market forward. The continuous evolution in software capabilities, including enhanced data visualization and integration capabilities, further contributes to the rising adoption of GIS solutions worldwide.
One of the pivotal growth drivers of the Software GIS market is the expanding requirement for spatial data and analytics to enhance operational efficiency across multiple industry verticals. Industries such as urban planning, transportation, agriculture, and natural resources management are increasingly relying on GIS solutions for data-driven decision-making. The ability of GIS to provide real-time, location-based insights is revolutionizing how businesses plan, manage resources, and optimize their operations. Moreover, the rapid digitization and adoption of IoT (Internet of Things) technologies are also bolstering the demand for GIS software, as businesses seek to leverage interconnected devices for better data collection and analysis. The integration of GIS with IoT platforms allows for more comprehensive and precise spatial insights, thus driving market growth.
Another significant factor contributing to the growth of the Software GIS market is the advancement in cloud computing technologies. The shift from traditional on-premises deployment to cloud-based GIS solutions is gaining traction due to the numerous advantages offered by the cloud. Cloud-based GIS provides enhanced scalability, flexibility, and cost-effectiveness, making it an attractive option for businesses of all sizes. Additionally, cloud solutions facilitate easier collaboration and data sharing among different stakeholders, fostering a more integrated approach to spatial data management. The growing investment in cloud infrastructure by major players in the technology sector further supports the widespread adoption of cloud-based GIS solutions, enabling businesses to harness the power of spatial data in a more efficient and streamlined manner.
Furthermore, the increasing emphasis on environmental conservation and sustainable development is driving the demand for GIS applications in environmental monitoring and management. GIS software is extensively used for mapping and analyzing environmental data, helping organizations to monitor changes in land use, assess natural resource availability, and evaluate the impact of human activities on the environment. As governments and organizations worldwide strive to meet sustainability goals and address climate change challenges, GIS solutions are becoming indispensable tools for informed decision-making and strategic planning. The integration of GIS with emerging technologies such as AI and machine learning is also enhancing the capabilities of these systems, enabling more sophisticated analysis and predictive modeling.
The application of GIS in Transportation is becoming increasingly significant as the demand for efficient and sustainable transport systems grows. GIS technology enables transportation planners and operators to analyze spatial data in real-time, optimizing route planning and improving logistics operations. By integrating GIS with technologies like GPS and telematics, transportation systems can provide more accurate and timely information, enhancing decision-making processes. This integration is crucial for managing transportation networks effectively, reducing costs, and improving service delivery. As urban areas continue to expand and the need for smart transportation solutions rises, GIS in Transportation is expected to play a pivotal role in shaping the future of mobility.
The Software segment of the GIS market is experiencing significant growth, driven by the continuous innovation and development of advanced GIS software solutions. Software providers are focusing on enhancing the functionality and usability of their products, incorporating features such as 3D visualization, real-time data process
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) in Telecom market is expected to reach $1092.7 million by 2033, expanding at a CAGR of 3.0% from 2025 to 2033. Drivers of the market include the increasing adoption of GIS in network planning and optimization, asset management, and customer relationship management. Cloud-based GIS solutions are gaining traction due to their cost-effectiveness and scalability. Large enterprises are expected to dominate the market segment due to their complex infrastructure and data management requirements. Key players in the GIS market for Telecom include Esri, Hexagon, Trimble, and Pitney Bowes. North America is expected to hold the largest market share due to the presence of major telecom companies and the early adoption of GIS technologies. The Asia Pacific region is projected to exhibit the fastest growth rate due to the rapid expansion of the telecom industry in countries such as China and India. Telecommunication companies utilize GIS to optimize network planning and automate asset management, resulting in improved efficiency and cost savings. The emergence of 5G and IoT is creating new opportunities for GIS in telecom, driving market growth in the coming years. The global Geographic Information System (GIS) in Telecom market is projected to reach $20 billion by 2026, growing at a CAGR of 9.2% from 2021 to 2026. The market is driven by the increasing demand for location-based services, the need for improved network planning and optimization, and the rise of smart cities.
According to our latest research, the global Geographic Information System (GIS) Software market size reached USD 11.6 billion in 2024, reflecting a robust demand for spatial data analytics and location-based services across various industries. The market is experiencing a significant growth trajectory, driven by a CAGR of 12.4% from 2025 to 2033. By the end of 2033, the GIS Software market is forecasted to attain a value of USD 33.5 billion. This remarkable expansion is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing, which are enhancing the capabilities and accessibility of GIS platforms.
One of the major growth factors propelling the GIS Software market is the increasing adoption of location-based services across urban planning, transportation, and utilities management. Governments and private organizations are leveraging GIS solutions to optimize infrastructure development, streamline resource allocation, and improve emergency response times. The proliferation of smart city initiatives worldwide has further fueled the demand for GIS tools, as urban planners and municipal authorities require accurate spatial data for effective decision-making. Additionally, the evolution of 3D GIS and real-time mapping technologies is enabling more sophisticated modeling and simulation, expanding the scope of GIS applications beyond traditional mapping to include predictive analytics and scenario planning.
Another significant driver for the GIS Software market is the rapid digitization of industries such as agriculture, mining, and oil & gas. Precision agriculture, for example, relies heavily on GIS platforms to monitor crop health, manage irrigation, and enhance yield forecasting. Similarly, the mining sector uses GIS for exploration, environmental impact assessment, and asset management. The integration of remote sensing data with GIS software is providing stakeholders with actionable insights, leading to higher efficiency and reduced operational risks. Furthermore, the growing emphasis on environmental sustainability and regulatory compliance is prompting organizations to invest in advanced GIS solutions for monitoring land use, tracking deforestation, and managing natural resources.
The expanding use of cloud-based GIS solutions is also a key factor driving market growth. Cloud deployment offers scalability, cost-effectiveness, and remote accessibility, making GIS tools more accessible to small and medium enterprises as well as large organizations. The cloud model supports real-time data sharing and collaboration, which is particularly valuable for disaster management and emergency response teams. As organizations increasingly prioritize digital transformation, the demand for cloud-native GIS platforms is expected to rise, supported by advancements in data security, interoperability, and integration with other enterprise systems.
Regionally, North America remains the largest market for GIS Software, accounting for a significant share of global revenues. This leadership is underpinned by substantial investments in smart infrastructure, advanced transportation systems, and environmental monitoring programs. The Asia Pacific region, however, is witnessing the fastest growth, driven by rapid urbanization, government-led digital initiatives, and the expansion of the utility and agriculture sectors. Europe continues to demonstrate steady adoption, particularly in environmental management and urban planning, while Latin America and the Middle East & Africa are emerging as promising markets due to increasing investments in infrastructure and resource management.
The GIS Software market is segmented by component into Software and Services, each playing a pivotal role in the overall value chain. The software segment includes comprehensive GIS platforms, spatial analytics tools, and specialized applications
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Analytics market size is projected to grow remarkably from $9.1 billion in 2023 to $21.7 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This substantial growth can be attributed to several factors such as technological advancements in GIS, increasing adoption in various industry verticals, and the rising importance of spatial data for decision-making processes.
The primary growth driver for the GIS Analytics market is the increasing need for accurate and efficient spatial data analysis to support critical decision-making processes across various industries. Governments and private sectors are investing heavily in GIS technology to enhance urban planning, disaster management, and resource allocation. With the world becoming more data-driven, the reliance on GIS for geospatial data has surged, further propelling its market growth. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) with GIS is revolutionizing the analytics capabilities, offering deeper insights and predictive analytics.
Another significant growth factor is the expanding application of GIS analytics in disaster management and emergency response. Natural disasters such as hurricanes, earthquakes, and wildfires have highlighted the importance of GIS in disaster preparedness, response, and recovery. The ability to analyze spatial data in real-time allows for quicker and more efficient allocation of resources, thus minimizing the impact of disasters. Moreover, GIS analytics plays a pivotal role in climate change studies, helping scientists and policymakers understand and mitigate the adverse effects of climate change.
The transportation sector is also a major contributor to the growth of the GIS Analytics market. With the rapid urbanization and increasing traffic congestion in cities, there is a growing demand for effective transport management solutions. GIS analytics helps in route optimization, traffic management, and infrastructure development, thereby enhancing the overall efficiency of transportation systems. The integration of GIS with Internet of Things (IoT) devices and sensors is further enhancing the capabilities of traffic management systems, contributing to the market growth.
Regionally, North America is the largest market for GIS analytics, driven by the high adoption rate of advanced technologies and significant investment in geospatial infrastructure by both public and private sectors. The Asia Pacific region is expected to witness the highest growth rate during the forecast period due to the rapid urbanization, infrastructural developments, and increasing government initiatives for smart city projects. Europe and Latin America are also contributing significantly to the market growth owing to the increasing use of GIS in urban planning and environmental monitoring.
The GIS Analytics market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the continuous advancements in GIS software solutions that offer enhanced functionalities such as data visualization, spatial analysis, and predictive modeling. The increasing adoption of cloud-based GIS software solutions, which offer scalable and cost-effective options, is further driving the growth of this segment. Additionally, open-source GIS software is gaining popularity, providing more accessible and customizable options for users.
The hardware segment includes GIS data collection devices such as GPS units, remote sensing instruments, and other data acquisition tools. This segment is witnessing steady growth due to the increasing demand for high-precision GIS data collection equipment. Technological advancements in hardware, such as the development of LiDAR and drones for spatial data collection, are significantly enhancing the capabilities of GIS analytics. Additionally, the integration of mobile GIS devices is facilitating real-time data collection, contributing to the growth of the hardware segment.
The services segment encompasses consulting, implementation, training, and maintenance services. This segment is expected to grow at a significant pace due to the increasing demand for professional services to manage and optimize GIS systems. Organizations are seeking expert consultants to help them leverage GIS analytics for strategic decision-making and operational efficiency. Additionally, the growing complexity o
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The Geographic Information System (GIS) market is witnessing robust growth with its global market size projected to reach USD 25.7 billion by 2032, up from USD 8.7 billion in 2023, at a compound annual growth rate (CAGR) of 12.4% during the forecast period. This growth is primarily driven by the increasing integration of GIS technology across various industries to improve spatial data visualization, enhance decision-making, and optimize operations. The benefits offered by GIS in terms of accuracy, efficiency, and cost-effectiveness are convincing more sectors to adopt these systems, thereby expanding the market size significantly.
A major growth factor contributing to the GIS market expansion is the escalating demand for location-based services. As businesses across different sectors recognize the importance of spatial data analytics in driving strategic decisions, the reliance on GIS applications is becoming increasingly pronounced. The rise in IoT devices, coupled with the enhanced capabilities of AI and machine learning, has further fueled the demand for GIS solutions. These technologies enable the processing and analysis of large volumes of spatial data, thereby providing valuable insights that businesses can leverage for competitive advantage. In addition, government initiatives promoting the adoption of digital infrastructure and smart city projects are playing a crucial role in the growth of the GIS market.
The advancement in satellite imaging and remote sensing technologies is another key driver of the GIS market growth. With enhanced satellite capabilities, the precision and quality of geospatial data have significantly improved, making GIS applications more reliable and effective. The availability of high-resolution satellite imagery has opened new avenues in various sectors including agriculture, urban planning, and disaster management. Moreover, the decreasing costs of satellite data acquisition and the proliferation of drone technology are making GIS more accessible to small and medium enterprises, further expanding the market potential.
The advent of 3D Geospatial Technologies is revolutionizing the way industries utilize GIS data. By providing a three-dimensional perspective, these technologies enhance spatial analysis and visualization, offering more detailed and accurate representations of geographical areas. This advancement is particularly beneficial in urban planning, where 3D models can simulate cityscapes and infrastructure, allowing planners to visualize potential developments and assess their impact on the environment. Moreover, 3D geospatial data is proving invaluable in sectors such as construction and real estate, where it aids in site analysis and project planning. As these technologies continue to evolve, they are expected to play a pivotal role in the future of GIS, expanding its applications and driving further market growth.
Furthermore, the increasing application of GIS in environmental monitoring and management is bolstering market growth. With growing concerns over climate change and environmental degradation, GIS is being extensively used for resource management, biodiversity conservation, and natural disaster risk management. This trend is expected to continue as more organizations and governments prioritize sustainability, thereby driving the demand for advanced GIS solutions. The integration of GIS with other technologies such as big data analytics, and cloud computing is also expected to enhance its capabilities, making it an indispensable tool for environmental management.
Regionally, North America is currently leading the GIS market, driven by the widespread adoption of advanced technologies and the presence of major GIS vendors. The regionÂ’s focus on infrastructure development and smart city projects is further propelling the market growth. Europe is also witnessing significant growth owing to the increasing adoption of GIS in various industries such as agriculture and transportation. The Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, attributed to rapid urbanization, government initiatives for digital transformation, and increasing investments in infrastructure development. In contrast, the markets in Latin America and the Middle East & Africa are growing steadily as these regions continue to explore and adopt GIS technologies.
<a href="https://dataintelo.com/report/geospatial-data-fusion-market" target="_blank&quo
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for geographic information systems and science in the U.S.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) software market is experiencing robust growth, driven by increasing adoption across various sectors like government, utilities, and transportation. The market, currently valued at approximately $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key trends, including the rising demand for location-based services, the proliferation of geospatial data, and the increasing use of cloud-based GIS solutions. The cloud-based segment is rapidly gaining traction due to its scalability, cost-effectiveness, and accessibility. Furthermore, the enterprise application segment dominates the market share, reflecting the widespread adoption of GIS for complex spatial analysis and decision-making in large organizations. While the market faces some restraints, such as the high initial investment costs for some advanced systems and the need for specialized expertise, the overall growth trajectory remains positive. The increasing integration of GIS with other technologies like AI and IoT further enhances its capabilities, opening new avenues for market expansion. Major players like Esri, Google, and Pitney Bowes are leading the market, constantly innovating and expanding their product offerings to meet evolving customer needs. The regional distribution of the market shows strong performance in North America and Europe, driven by advanced technological infrastructure and high adoption rates. However, the Asia-Pacific region is emerging as a significant growth area, propelled by rapid urbanization and infrastructure development. The competitive landscape is marked by both established players and emerging startups, fostering innovation and competition. The ongoing advancements in GIS technology, including improvements in data visualization, analytics, and mobile accessibility, are expected to further propel market growth in the coming years. The integration of GIS with other technologies will lead to new applications and expanded opportunities, ultimately driving the market towards sustained expansion throughout the forecast period.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) market was valued at USD 10.76 billion in 2025 and is projected to grow at a CAGR of 8.7% from 2025 to 2033. The increasing adoption of GIS in various industries, such as utilities, construction, and transportation, is driving the market growth. Additionally, the rising demand for accurate and timely geospatial information for decision-making is further fueling the market expansion. Key market trends include the increasing popularity of cloud-based GIS solutions, the integration of GIS with other technologies such as IoT and AI, and the growing adoption of GIS in developing countries. The hardware segment is expected to hold the largest market share, followed by the software and services segments. North America is the largest regional market for GIS, followed by Europe and Asia Pacific. The increasing adoption of GIS in smart city projects and the need for improved infrastructure management are expected to drive growth in the GIS market in these regions. Major players in the market include Autodesk Inc., Bentley Systems, CARTO, Environmental Systems Research Institute, Inc., Hexagon AB, Pitney Bowes Inc., SuperMap Software Co., Ltd., TOPCON CORPORATION, Trimble Inc., and L3Harris Technologies, Inc. The global Geographic Information System (GIS) market is growing rapidly, driven by the increasing adoption of GIS technology across various industries. The market is expected to reach USD 400 billion by 2027, growing at a CAGR of 15%. Recent developments include: In July 2024, Ceinsys Tech Ltd. announced the expansion of its GIS services portfolio in the U.S. market with the asset purchase of Virtual Tours, LLC. , In May 2024, NV5 Global, Inc. announced the acquisition of GIS Solutions, Inc., which provides enterprise GIS technologies and services such as GIS application development and cloud-based database design. , In April 2023, Trimble Inc. launched Trimble Unity AMS solution, which is the GIS-centric electric-based platform developed to manage the lifecycle of asset infrastructure. .
https://www.icpsr.umich.edu/web/ICPSR/studies/8374/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8374/terms
The Geographic Names Information System (GNIS) was developed by the United States Geological Survey (USGS) to meet major national needs regarding geographic names and their standardization and dissemination. This dataset consists of standard report files written from the National Geographic Names Data Base, one of five data bases maintained in the GNIS. A standard format data file containing Michigan place names and geographic features such as towns, schools, reservoirs, parks, streams, valleys, springs and ridges is accompanied by a file that provides a Cross-Reference to USGS 7.5 x 7.5 minute quadrangle maps for each feature. The records in the data files are organized alphabetically by place or feature name. The other variables available in the dataset include: Federal Information Processing Standard (FIPS) state/county codes, Geographic Coordinates -- latitude and longitude to degrees, minutes, and seconds followed by a single digit alpha directional character, and a GNIS Map Code that can be used with the Cross-Reference file to provide the name of the 7.5 x 7.5 minute quadrangle map that contains that geographic feature.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) solutions market size was valued at USD XX million in 2025 and is projected to expand at a CAGR of XX % over the forecast period, reaching USD XXX million by 2033. The growing adoption of GIS solutions across various industries, such as agriculture, oil & gas, architecture, engineering and construction, transportation, mining, government, healthcare, and others, is driving market growth. The increasing need for accurate and timely geospatial data for decision-making, along with the advancements in cloud computing, artificial intelligence (AI), and machine learning (ML), are key trends contributing to market expansion. However, data security concerns and the high cost of implementation and maintenance may restrain market growth to some extent. Key players in the GIS solutions market include ESRI, Hexagon, Pitney Bowes, SuperMap, Bentley System, GE, GeoStar, Zondy Cyber Group, Caliper, Hitachi Solutions, and KCI. North America holds a significant share of the market due to the early adoption of GIS solutions and the presence of major players. Asia Pacific is expected to witness substantial growth over the forecast period owing to the increasing infrastructure development and urbanization in the region.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Overview and Growth: The global Geographic Information Technology (GIT) services market is experiencing steady growth, with a market size of XXX million in 2025 and a projected CAGR of XX% from 2025 to 2033. This growth is attributed to factors such as urbanization, increased demand for geospatial data in decision-making processes, and advancements in surveying and mapping technologies. The market is segmented by type (surveying and mapping, satellite navigation, GIS, etc.) and application (commercial, government, military). Major companies operating in this space include ERSI, Hexagon, Pitney Bowes, and SuperMap. Market Trends and Restraints: Key trends in the GIT services market include the rapid adoption of GIS technology for urban planning and management, the increasing use of satellite imagery for environmental monitoring, and the integration of geospatial data with IoT and AI systems. However, market growth is tempered by factors such as the high cost of GIS software and data, the need for specialized expertise in GIS, and data security concerns related to geospatial data sharing. Regionally, North America and Europe are the dominant markets for GIT services, while emerging markets such as Asia Pacific and South America present significant growth opportunities.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and infrastructure development necessitate sophisticated spatial data management and analysis, fueling demand for GIS solutions across various sectors. The construction industry, for instance, leverages GIS for project planning, site surveying, and resource management, while utilities companies use it for network optimization and asset management. Furthermore, the growing adoption of cloud-based GIS platforms enhances accessibility, scalability, and cost-effectiveness, attracting a wider user base. Precision agriculture, another significant driver, utilizes GIS for efficient land management, crop monitoring, and yield optimization. Technological advancements, particularly in areas like sensor technology (imaging sensors, LIDAR), GNSS/GPS, and improved data analytics capabilities, continuously enhance GIS functionalities and expand its applications. Competitive landscape includes major players like Esri, Hexagon, and Autodesk, driving innovation and fostering market competitiveness. However, the market faces some challenges. The high initial investment required for implementing GIS solutions, along with the need for specialized technical expertise, can be barriers to entry, particularly for smaller businesses. Data security and privacy concerns also remain a significant factor influencing market growth. Despite these restraints, the long-term outlook for the GIS market remains positive, driven by continued technological progress, increasing data availability, and growing awareness of the benefits of spatial data analysis across diverse industries. The market is expected to witness substantial growth in regions like Asia Pacific and North America owing to high adoption rates and increasing investment in infrastructure projects. The consistent improvements in accuracy and cost-effectiveness of GIS technology will continue to open up new application areas, further fueling market expansion throughout the forecast period.
I’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Geographic Information System (GIS) Tools market is experiencing robust growth, projected to reach $2890.3 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.3% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and the need for efficient city planning and management are fueling demand for sophisticated GIS solutions. Furthermore, the rising adoption of cloud-based GIS platforms offers scalability, accessibility, and cost-effectiveness, attracting both SMEs and large enterprises. The integration of GIS with other technologies, such as IoT and AI, is enhancing data analysis capabilities and creating new applications in areas like precision agriculture, environmental monitoring, and disaster response. However, challenges remain, including the high initial investment costs associated with implementing GIS systems and the need for skilled professionals to manage and interpret complex spatial data. The market is segmented by deployment type (cloud-based and on-premises) and user type (SMEs and large enterprises), with the cloud-based segment demonstrating faster growth due to its inherent flexibility and affordability. North America currently holds a significant market share, driven by the presence of major technology companies and a high rate of GIS adoption across various sectors. However, developing regions in Asia-Pacific and the Middle East & Africa present significant growth opportunities, fueled by increasing infrastructure development and government initiatives promoting digital transformation. The competitive landscape is highly dynamic, with both established players like IBM TRIRIGA and Infor EAM, and emerging companies such as UpKeep and Samsara competing for market share. The success of these companies hinges on their ability to offer innovative solutions tailored to specific industry needs, coupled with robust customer support and seamless integration with existing IT infrastructure. Future market growth will depend on continued technological advancements, the expanding applications of GIS technology across diverse sectors, and effective strategies to overcome the challenges related to data security, interoperability, and skills development. The forecast period of 2025-2033 anticipates a continued upward trajectory, with ongoing expansion in both established and emerging markets globally.
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for geographical information systems in the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5
If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD
The following text is a summary of the information in the above Data Descriptor.
The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.
The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.
These maps represent a unique global representation of physical access to essential services offered by cities and ports.
The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).
travel_time_to_ports_x (x ranges from 1 to 5)
The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.
Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes
Data type Byte (16 bit Unsigned Integer)
No data value 65535
Flags None
Spatial resolution 30 arc seconds
Spatial extent
Upper left -180, 85
Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)
Temporal resolution 2015
Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.
Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.
The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.
Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points
The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).
Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.
Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.
This process and results are included in the validation zip file.
Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.
The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.
The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.
The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,