73 datasets found
  1. ACS Health Insurance Coverage Variables - Boundaries

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gis-fema.hub.arcgis.com
    • +8more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Boundaries [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/a1574f4bb84f4da78b60fa0c8616eaa1
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  2. D

    Disability and Health Insurance - Seattle Neighborhoods

    • data.seattle.gov
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Disability and Health Insurance - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Disability-and-Health-Insurance-Seattle-Neighborho/nxn5-xp4j
    Explore at:
    application/rssxml, application/rdfxml, tsv, csv, xml, jsonAvailable download formats
    Dataset updated
    Oct 22, 2024
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023
    ACS Table(s): C21007, B27010, B22010


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data

  3. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, KENAI-COOK BOROUGH, ALASKA, USA

    • datasets.ai
    • catalog.data.gov
    0
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Agency, Department of Homeland Security (2024). DIGITAL FLOOD INSURANCE RATE MAP DATABASE, KENAI-COOK BOROUGH, ALASKA, USA [Dataset]. https://datasets.ai/datasets/digital-flood-insurance-rate-map-database-kenai-cook-borough-alaska-usa
    Explore at:
    0Available download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Federal Emergency Management Agency, Department of Homeland Security
    Area covered
    Kenai, United States, Kenai Peninsula Borough, Alaska
    Description

    FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas & lines. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)

  4. d

    Geospatial Data | Global Coverage: US, UK, Germany, France (...) | 164M+...

    • datarade.ai
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). Geospatial Data | Global Coverage: US, UK, Germany, France (...) | 164M+ Places | API, Dataset [Dataset]. https://datarade.ai/data-products/geospatial-data-global-coverage-us-uk-germany-france-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Belgium, France, United Kingdom, United States, Germany
    Description

    Unlock the power of 164M+ verified locations across 220+ countries with high-precision geospatial data. Featuring 50+ enriched attributes including coordinates, building type, and geometry. Our AI-powered dataset ensures unmatched accuracy through advanced deduplication and enrichment. With 30+ years of industry expertise, we deliver trusted, customizable data solutions for mapping, navigation, urban planning, and marketing, empowering smarter decision-making and strategic growth.

    Key use cases of Geospatial data have helped our customers in several areas:

    1. Gain a Competitive Edge with Smarter Mapping : Use geospatial data to analyse competitors, identify high-traffic zones, and optimize locations for maximum impact.
    2. Enhance Navigation & Location-Based Engagement : Improve turn-by-turn navigation, EV charging station discovery, and real-time travel insights for seamless customer experiences.
    3. Find High-Value Locations for Business Growth : Leverage geospatial intelligence to select profitable retail sites, franchise locations, and warehouses with precision.
    4. Streamline Deliveries & Address Validation : Improve shipping accuracy, reduce failed deliveries, and optimize courier routes for better customer satisfaction.
    5. Drive Smarter Decisions with Spatial Analysis : Utilize location intelligence for disaster risk assessment, public health campaigns, and agricultural planning.
  5. Geospatial Analytics Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Analytics Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, UK, Germany - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United Kingdom, United States, Global
    Description

    Snapshot img

    Geospatial Analytics Market Size 2024-2028

    The geospatial analytics market size is forecast to increase by USD 127.2 billion at a CAGR of 18.68% between 2023 and 2028.

    The market is experiencing significant growth due to the increasing adoption of geospatial data analytics in sectors such as healthcare and insurance. This trend is driven by the abundance of data being generated through emerging methods like remote sensing, IoT, and drones. However, data privacy and security concerns remain a challenge, as geospatial data can reveal sensitive information.
    Organizations must implement robust security measures to protect this valuable information. In the US and North America, the market is expected to grow steadily, driven by the region's advanced technological infrastructure and increasing focus on data-driven decision-making. Companies in this space should stay abreast of emerging trends and address concerns related to data security to remain competitive.
    

    What will be the Size of the Geospatial Analytics Market During the Forecast Period?

    Request Free Sample

    The market is experiencing significant growth due to the increasing demand for location intelligence in various industries, particularly Medium Scale Enterprises (MSEs). This market is driven by the integration of Artificial Intelligence (AI) and machine learning (ML), enabling advanced data analysis and prediction capabilities. The Internet of Things (IoT) is also fueling market growth, as real-time location data is collected and analyzed for various applications, including disaster risk reduction. Hexagon and Luciad are among the key players in this market, offering advanced geospatial analytics solutions. Big data analysis, digital globe imagery, and Pitney Bowes' location intelligence offerings are also contributing to market expansion.
    The integration of AI, ML, and 5G technology is expected to further accelerate growth, with applications ranging from supply chain optimization to web-based GIS platforms built using JavaScript and HTML5.
    

    How is this Geospatial Analytics Industry segmented and which is the largest segment?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2017-2022 for the following segments.

    Technology
    
      GPS
      GIS
      Remote sensing
      Others
    
    
    End-user
    
      BFSI
      Government and utilities
      Telecom
      Manufacturing and automotive
      Others
    
    
    Component
    
      Software
      Service
    
    
    Type
    
      Surface & Field Analytics
      Network & Location Analytics
      Geovisualization
      Others
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
    
    
      APAC
    
        China
    
    
      Middle East and Africa
    
    
    
      South America
    

    By Technology Insights

    The GPS segment is estimated to witness significant growth during the forecast period. The market is driven by various sectors including Defense & Internal Security, Retail & Logistics, Energy & Utilities, Agriculture, Healthcare & Life Sciences, Infrastructure, and GIS. Among these, GPS, a satellite-based radio navigation system, was the largest segment in 2023. Operated by the US Space Force, GPS enables geolocation and time information transmission to receivers, facilitating georeferencing, positioning, navigation, and time and frequency control. This technology is widely used in industries such as logistics, transportation, and surveying, making it a significant contributor to the market's growth. The Energy & Utilities sector also leverages geospatial analytics for infrastructure planning, asset management, and maintenance, further fueling market expansion.

    Get a glance at the share of various segments. Request Free Sample

    The GPS segment was valued at USD 29.90 billion in 2018 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 36% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market share of various regions, Request Free Sample

    The North American region dominates the market due to the region's early adoption of advanced technologies and the maturity of industries, particularly in healthcare and the industrial sector. The healthcare industry's need for high-level analytics, driven by the COVID-19 pandemic, is a significant factor fueling market growth. In the industrial sector, the abundance of successful technology implementations leads to a faster rate of adoption. Geospatial analytics plays a crucial role in various applications. These applications provide valuable insights for businesses and governments, enabling informed decision-making and improving operational efficien

  6. United States Geospatial Analytics Market Report by Component (Solution,...

    • imarcgroup.com
    pdf,excel,csv,ppt
    Updated Apr 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IMARC Group (2024). United States Geospatial Analytics Market Report by Component (Solution, Services), Type (Surface and Field Analytics, Network and Location Analytics, Geovisualization, and Others), Technology (Remote Sensing, GIS, GPS, and Others), Enterprise Size (Large Enterprises, Small and Medium-sized Enterprises), Deployment Mode (On-premises, Cloud-based), Vertical (Automotive, Energy and Utilities, Government, Defense and Intelligence, Smart Cities, Insurance, Natural Resources, and Others), and Region 2024-2032 [Dataset]. https://www.imarcgroup.com/united-states-geospatial-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Apr 13, 2024
    Dataset provided by
    Imarc Group
    Authors
    IMARC Group
    License

    https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy

    Time period covered
    2024 - 2032
    Area covered
    Global, United States
    Description

    United States geospatial analytics market size reached USD 25.2 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 60.1 Billion by 2033, exhibiting a growth rate (CAGR) of 10% during 2025-2033. The growing need for facilitating data-driven decisions, along with the rising focus of government bodies on improving situational awareness and monitoring of troops and enemy movements, is primarily propelling the market growth across the country.

    Report Attribute
    Key Statistics
    Base Year
    2024
    Forecast Years
    2025-2033
    Historical Years
    2019-2024
    Market Size in 2024USD 25.2 Billion
    Market Forecast in 2033USD 60.1 Billion
    Market Growth Rate (2025-2033)10%

    IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2025-2033. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.

  7. Vietnam Geospatial Analytics Market Report by Component (Solution,...

    • imarcgroup.com
    pdf,excel,csv,ppt
    Updated Dec 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IMARC Group (2023). Vietnam Geospatial Analytics Market Report by Component (Solution, Services), Type (Surface and Field Analytics, Network and Location Analytics, Geovisualization, and Others), Technology (Remote Sensing, GIS, GPS, and Others), Enterprise Size (Large Enterprises, Small and Medium-sized Enterprises), Deployment Mode (On-premises, Cloud-based), Vertical (Automotive, Energy and Utilities, Government, Defense and Intelligence, Smart Cities, Insurance, Natural Resources, and Others), and Region 2024-2032 [Dataset]. https://www.imarcgroup.com/vietnam-geospatial-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 26, 2023
    Dataset provided by
    Imarc Group
    Authors
    IMARC Group
    License

    https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy

    Time period covered
    2024 - 2032
    Area covered
    Vietnam, Global
    Description

    Market Overview:

    The Vietnam geospatial analytics market size is projected to exhibit a growth rate (CAGR) of 8.90% during 2024-2032. The increasing product utilization by government authorities in various sectors, various technological advancements in satellite technology, remote sensing, and data collection methods, and the rising development of smart cities represent some of the key factors driving the market.

    Report Attribute
    Key Statistics
    Base Year
    2023
    Forecast Years
    2024-2032
    Historical Years
    2018-2023
    Market Growth Rate (2024-2032)8.90%


    Geospatial analytics is a field of data analysis that focuses on the interpretation and analysis of geographic and spatial data to gain valuable insights and make informed decisions. It combines geographical information systems (GIS), advanced data analysis techniques, and visualization tools to analyze and interpret data with a spatial or geographic component. It also enables the collection, storage, analysis, and visualization of geospatial data. It provides tools and software for managing and manipulating spatial data, allowing users to create maps, perform spatial queries, and conduct spatial analysis. In addition, geospatial analytics often involves integrating geospatial data with other types of data, such as demographic data, environmental data, or economic data. This integration helps in gaining a more comprehensive understanding of complex phenomena. Moreover, geospatial analytics has a wide range of applications. For example, it can be used in urban planning to optimize transportation routes, in agriculture to manage crop yield and soil quality, in disaster management to assess and respond to natural disasters, in wildlife conservation to track animal migrations, and in business for location-based marketing and site selection.

    Vietnam Geospatial Analytics Market Trends:

    The Vietnamese government has recognized the importance of geospatial analytics in various sectors, including urban planning, agriculture, disaster management, and environmental monitoring. Initiatives to develop and utilize geospatial data for public projects and policy-making have spurred demand for geospatial analytics solutions. In addition, Vietnam is experiencing rapid urbanization and infrastructure development. Geospatial analytics is critical for effective urban planning, transportation management, and infrastructure optimization. This trend is driving the adoption of geospatial solutions in cities and regions across the country. Besides, Vietnam's agriculture sector is a significant driver of its economy. Geospatial analytics helps farmers and agricultural businesses optimize crop management, soil health, and resource allocation. Consequently, precision farming techniques, enabled by geospatial data, are becoming increasingly popular, which is also propelling the market. Moreover, the development of smart cities in Vietnam relies on geospatial analytics for various applications, such as traffic management, public safety, and energy efficiency. Geospatial data is central to building the infrastructure needed for smart city initiatives. Furthermore, advances in satellite technology, remote sensing, and data collection methods have made geospatial data more accessible and affordable. This has lowered barriers to entry and encouraged the use of geospatial analytics in various sectors. Additionally, the telecommunications sector in Vietnam is expanding, and location-based services, such as navigation and advertising, rely on geospatial analytics. This creates opportunities for geospatial data providers and analytics solutions in the telecommunications industry.

    Vietnam Geospatial Analytics Market Segmentation:

    IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.

    Component Insights:

    Vietnam Geospatial Analytics Market Reporthttps://www.imarcgroup.com/CKEditor/2e6fe72c-0238-4598-8c62-c08c0e72a138other-regions1.webp" style="height:450px; width:800px" />

    • Solution
    • Services

    The report has provided a detailed breakup and analysis of the market based on the component. This includes solution and services.

    Type Insights:

    • Surface and Field Analytics
    • Network and Location Analytics
    • Geovisualization
    • Others

    A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes surface and field analytics, network and location analytics, geovisualization, and others.

    Technology Insights:

    • Remote Sensing
    • GIS
    • GPS
    • Others

    The report has provided a detailed breakup and analysis of the market based on the technology. This includes remote sensing, GIS, GPS, and others.

    Enterprise Size Insights:

    • Large Enterprises
    • Small and Medium-sized Enterprises

    A detailed breakup and analysis of the market based on the enterprise size have also been provided in the report. This includes large enterprises and small and medium-sized enterprises.

    Deployment Mode Insights:

    • On-premises
    • Cloud-based

    The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based.

    Vertical Insights:

    • Automotive
    • Energy and Utilities
    • Government
    • Defense and Intelligence
    • Smart Cities
    • Insurance
    • Natural Resources
    • Others

    A detailed breakup and analysis of the market based on the vertical have also been provided in the report. This includes automotive, energy and utilities, government, defense and intelligence, smart cities, insurance, natural resources, and others.

    Regional Insights:

    Vietnam Geospatial Analytics Market Reporthttps://www.imarcgroup.com/CKEditor/bbfb54c8-5798-401f-ae74-02c90e137388other-regions6.webp" style="height:450px; width:800px" />

    • Northern Vietnam
    • Central Vietnam
    • Southern Vietnam

    The report has also provided a comprehensive analysis of all the major regional markets, which include Northern Vietnam, Central Vietnam, and Southern Vietnam.

    Competitive Landscape:

    The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

    Vietnam Geospatial Analytics Market Report Coverage:

    <td

    Report FeaturesDetails
    Base Year of the Analysis2023
    Historical Period
  8. ACS Health Insurance by Age by Race Variables - Boundaries

    • gis-for-racialequity.hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +5more
    Updated Nov 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/0bdb1479d3554ae59337a0eb47b17afb
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. K

    Wake County, North Carolina Fire Insurance Districts

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated May 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wake County, North Carolina (2019). Wake County, North Carolina Fire Insurance Districts [Dataset]. https://koordinates.com/layer/101743-wake-county-north-carolina-fire-insurance-districts/
    Explore at:
    mapinfo mif, mapinfo tab, kml, dwg, geopackage / sqlite, geodatabase, csv, shapefile, pdfAvailable download formats
    Dataset updated
    May 15, 2019
    Dataset authored and provided by
    Wake County, North Carolina
    Area covered
    Description

    Geospatial data about Wake County, North Carolina Fire Insurance Districts. Export to CAD, GIS, PDF, CSV and access via API.

  10. d

    POI Data | Geospatial Data | Global Coverage: US, UK, Germany, France (...)...

    • datarade.ai
    Updated Oct 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2022). POI Data | Geospatial Data | Global Coverage: US, UK, Germany, France (...) | 164M+ Points of Interest | API, Dataset [Dataset]. https://datarade.ai/data-products/global-places-poi-the-best-global-points-of-interest-for-you-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 29, 2022
    Dataset authored and provided by
    InfobelPRO
    Area covered
    France, Germany, United Kingdom, United States
    Description

    Our Point of Interest (POI) data supports various location intelligence projects and facilitates the development of precise mapping and navigation tools, location analysis, address validation, and much more. Gain access to highly accurate, clean, and globally scaled POI data featuring over 164 million verified locations across 220 countries. We have been providing this data to companies worldwide for 30 years.

    • Develop mapping and navigation tools and software.
    • Identify new areas and locations suitable for business development.
    • Analyze the presence of competitors and nearby populations.
    • Optimize routes to enhance delivery efficiency.
    • Evaluate property values based on nearby infrastructure.
    • Support disaster management by identifying high-risk areas.
    • Promote your products and services using geotargeting strategies.

    Our data and custom-built software allow easy integration with any application, tool, or software.

    Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas: 1. Gaining a Competitive Edge: Utilize point of interest (POI) data to analyze competitors, identify high-opportunity areas, and attract more customers. 2. Enhancing Customer Journeys: Leverage location intelligence to provide personalized, real-time recommendations that boost customer engagement. 3. Optimizing Store Expansion: Select the most profitable locations by analyzing foot traffic, demographics, and competitor insights. 4. Streamlining Deliveries: Improve fulfillment accuracy through address validation, reducing failed shipments and increasing customer satisfaction. 5. Driving Smarter Campaigns: Use geospatial insights to effectively target the right audiences, enhance outreach, and maximize campaign impact.

  11. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  12. Digital Flood Insurance Rate Map Database, Bernalillo County, NM

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    • +3more
    arce
    Updated Nov 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Agency, Department of Homeland Security (2017). Digital Flood Insurance Rate Map Database, Bernalillo County, NM [Dataset]. https://data.wu.ac.at/schema/data_gov/OGEwZmFiYjAtYTVjNy00MzEzLWE1NjEtOTE0MGUyM2U1Yjlk
    Explore at:
    arceAvailable download formats
    Dataset updated
    Nov 14, 2017
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    fc91e83e4bfb292dbb07bf1af3c9181ca0c66734
    Description

    Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas and lines). These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)

  13. Geospatial Imagery Analytics Market Size, Share, Growth Analysis Report By...

    • fnfresearch.com
    pdf
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Facts and Factors (2025). Geospatial Imagery Analytics Market Size, Share, Growth Analysis Report By Type (Imagery Analytics and Video Analytics), By Collection Mediums (Satellites, Geographic Information System, Unmanned Aerial Vehicles, and Others), By Deployment Mode (Cloud, and On-premises), By Organization Size (Large Enterprises, Small & Medium-sized Enterprises (SMEs)), By Vertical (Insurance, Defense & Security, Government, Environmental Monitoring, Energy, Utility, & Natural Resources, Engineering & Construction, Mining & Manufacturing, Agriculture, Healthcare & Life Sciences, and Other Verticals), and By Region - Global and Regional Industry Insights, Overview, Comprehensive Analysis, Trends, Statistical Research, Market Intelligence, Historical Data and Forecast 2022 – 2028 [Dataset]. https://www.fnfresearch.com/geospatial-imagery-analytics-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Authors
    Facts and Factors
    License

    https://www.fnfresearch.com/privacy-policyhttps://www.fnfresearch.com/privacy-policy

    Time period covered
    2022 - 2030
    Area covered
    Global
    Description

    [230+ Pages Report] The global Geospatial Imagery Analytics market size is expected to grow from USD 61.5 billion to USD 126.01 billion by 2028, at a CAGR of 12.70% from 2022-2028

  14. Socioeconomic impacts GIS and Coverage Data - Datasets - NFWF Coastal...

    • resiliencedata.nfwf.org
    Updated Nov 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    resiliencedata.nfwf.org (2020). Socioeconomic impacts GIS and Coverage Data - Datasets - NFWF Coastal Resilience Open Data Platform [Dataset]. https://resiliencedata.nfwf.org/dataset/grant-55013-gis-coverage-data
    Explore at:
    Dataset updated
    Nov 5, 2020
    Dataset provided by
    National Fish and Wildlife Foundationhttp://www.nfwf.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes mapping data to track the socio-economic metrics associated with a number of projects funded through the Hurricane Sandy Coastal Resiliency Program. Project locations are found in Delaware, Massachusetts, New Jersey, Maryland, and New York. Data was collected from 2017 to 2020. The map data shows agricultural and cropland data, the area of influence at each site, the flooded areas around project sites, area with reduced flood depth because of the project, buildings and their position above and below water, concentrated animal feeding operations, emergency facilities, schools, correction facilities, natural gas processing plants, waste treatment plants, transportation data including data came from a variety of sources, including railways and roads, and watersheds. Data sources include the Department of Homeland Society, U.S. Census Bureau, Pipeline and Hazardous Materials Safety Administration, and U.S. Government open data.

  15. d

    SafeGraph: Location Data - Global Coverage 52M+ POIs

    • datarade.ai
    .csv
    Updated Mar 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2023). SafeGraph: Location Data - Global Coverage 52M+ POIs [Dataset]. https://datarade.ai/data-products/safegraph-location-data-global-coverage-41m-pois-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 30, 2023
    Dataset authored and provided by
    SafeGraph
    Area covered
    Norfolk Island, Ethiopia, Lao People's Democratic Republic, Wallis and Futuna, Mayotte, Papua New Guinea, Malawi, Curaçao, Liberia, Macedonia (the former Yugoslav Republic of)
    Description

    SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying location data coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

    SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation.

  16. France Geospatial Imagery Analytics Market Size & Share Analysis - Industry...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence, France Geospatial Imagery Analytics Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/france-geospatial-imagery-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    France
    Description

    The France Geospatial Imagery Analytics Market Report is Segmented Based On the Type (Imagery Analytics and Video Analytics), Deployment Mode (On-Premise and Cloud), Organization Size (SMEs and Large Enterprises), and Verticals (Insurance, Agriculture, Defense and Security, Environmental Monitoring, Engineering & Construction, Government and Other Verticals). The Market Sizes and Forecasts are Provided in Terms of Value USD for all the Above Segments.

  17. newGeoSure Insurance Product version 7 2015.1

    • data.wu.ac.at
    • metadata.bgs.ac.uk
    • +1more
    html
    Updated Aug 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2018). newGeoSure Insurance Product version 7 2015.1 [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/ZDEwMTZiMmQtNzI5Ny00NGM2LWEyNjMtOTI5OWM2NmE4M2Ji
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 18, 2018
    Dataset provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    Area covered
    bf7aaa113460c43d76ad2fb1676ede850c3ec1ca
    Description

    The newGeoSure Insurance Product (newGIP) provides the potential insurance risk due to natural ground movement. It incorporates the combined effects of the 6 GeoSure hazards on (low-rise) buildings. This data is available as vector data, 25m gridded data or alternatively linked to a postcode database the Derived Postcode Database. A series of GIS (Geographical Information System) maps show the most significant hazard areas. The ground movement, or subsidence, hazards included are landslides, shrink-swell clays, soluble rocks, running sands, compressible ground and collapsible deposits. The newGeoSure Insurance Product uses the individual GeoSure data layers and evaluates them using a series of processes including statistical analyses and expert elicitation techniques to create a derived product that can be used for insurance purposes such as identifying and estimating risk and susceptibility. The Derived Postcode Database (DPD) contains generalised information at a postcode level. The DPD is designed to provide a summary value representing the combined effects of the GeoSure dataset across a postcode sector area. It is available as a GIS point dataset or a text (.txt) file format. The DPD contains a normalised hazard rating for each of the 6 GeoSure themes hazards (i.e. each GeoSure theme has been balanced against each other) and a combined unified hazard rating for each postcode in Great Britain. The combined hazard rating for each postcode is available as a standalone product. The Derived Postcode Database is available in a point data format or text file format. It is available in a range of GIS formats including ArcGIS (.shp), ArcInfo Coverages and MapInfo (.tab). More specialised formats may be available but may incur additional processing costs. The newGeoSure Insurance Product dataset has been created as vector data but is also available as a raster grid. This data is available in a range of GIS formats, including ArcGIS (.shp), ArcInfo coverages and MapInfo (.tab). More specialised formats may be available but may incur additional processing costs. Data for the newGIP is provided for national coverage across Great Britain. The newGeoSure Insurance Product dataset is produced for use at 1:50 000 scale providing 50 m ground resolution. This dataset has been specifically developed for the insurance of low-rise buildings. The GeoSure datasets have been developed to identify the potential hazard for low-rise buildings and those with shallow foundations of less than 2 m deep. The identification of ground instability and other geological hazards can assist regional planners; rapidly identifying areas with potential problems and aid local government offices in making development plans by helping to define land suited to different uses. Other users of these data may include developers, homeowners, solicitors, loss adjusters, the insurance industry, architects and surveyors. Version 7 released June 2015.

  18. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Japan, Canada, United Arab Emirates, Europe, China, South Korea, Brazil, United Kingdom, United States, Germany, Global
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
    

    What will be the Size of the GIS Market During the Forecast Period?

    Request Free Sample

    The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
    Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
    

    How is this GIS Industry segmented and which is the largest segment?

    The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
        France
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Middle East and Africa
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.

    Get a glance at the GIS Industry report of share of various segments Request Free Sample

    The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 38% to the growth of the global market during the forecast period.
    

    Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th

  19. Cincinnati Specialty Underwriters Insurance CO reported holding of GIS

    • filingexplorer.com
    Updated Sep 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cincinnati Specialty Underwriters Insurance CO (2016). Cincinnati Specialty Underwriters Insurance CO reported holding of GIS [Dataset]. https://www.filingexplorer.com/form13f-holding/370334104?cik=0001426763&period_of_report=2016-09-30
    Explore at:
    Dataset updated
    Sep 30, 2016
    Dataset provided by
    The Cincinnati Specialty Underwriters Insurance Company
    Authors
    Cincinnati Specialty Underwriters Insurance CO
    Description

    Historical ownership data of GIS by Cincinnati Specialty Underwriters Insurance CO

  20. Canada Geospatial Imagery Analytics Market Size & Share Analysis - Industry...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence, Canada Geospatial Imagery Analytics Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/canada-geospatial-imagery-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Canada
    Description

    The Canada Geospatial Imagery Analytics Market Report is Segmented Based On Type (imagery Analytics and Video Analytics), Deployment Mode (on-Premise and Cloud), Organization Size (SMEs and Large Enterprises), and Verticals (insurance, Agriculture, Defense and Security, Environmental Monitoring, Engineering and Construction, and Government). The Market Size and Forecasts are Provided in Terms of Value USD for all the Segments Mentioned Above.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2018). ACS Health Insurance Coverage Variables - Boundaries [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/a1574f4bb84f4da78b60fa0c8616eaa1
Organization logo

ACS Health Insurance Coverage Variables - Boundaries

Explore at:
Dataset updated
Dec 7, 2018
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Search
Clear search
Close search
Google apps
Main menu