This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Table from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas & lines. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)
Unlock the power of 164M+ verified locations across 220+ countries with high-precision geospatial data. Featuring 50+ enriched attributes including coordinates, building type, and geometry. Our AI-powered dataset ensures unmatched accuracy through advanced deduplication and enrichment. With 30+ years of industry expertise, we deliver trusted, customizable data solutions for mapping, navigation, urban planning, and marketing, empowering smarter decision-making and strategic growth.
Key use cases of Geospatial data have helped our customers in several areas:
Geospatial Analytics Market Size 2024-2028
The geospatial analytics market size is forecast to increase by USD 127.2 billion at a CAGR of 18.68% between 2023 and 2028.
The market is experiencing significant growth due to the increasing adoption of geospatial data analytics in sectors such as healthcare and insurance. This trend is driven by the abundance of data being generated through emerging methods like remote sensing, IoT, and drones. However, data privacy and security concerns remain a challenge, as geospatial data can reveal sensitive information.
Organizations must implement robust security measures to protect this valuable information. In the US and North America, the market is expected to grow steadily, driven by the region's advanced technological infrastructure and increasing focus on data-driven decision-making. Companies in this space should stay abreast of emerging trends and address concerns related to data security to remain competitive.
What will be the Size of the Geospatial Analytics Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing demand for location intelligence in various industries, particularly Medium Scale Enterprises (MSEs). This market is driven by the integration of Artificial Intelligence (AI) and machine learning (ML), enabling advanced data analysis and prediction capabilities. The Internet of Things (IoT) is also fueling market growth, as real-time location data is collected and analyzed for various applications, including disaster risk reduction. Hexagon and Luciad are among the key players in this market, offering advanced geospatial analytics solutions. Big data analysis, digital globe imagery, and Pitney Bowes' location intelligence offerings are also contributing to market expansion.
The integration of AI, ML, and 5G technology is expected to further accelerate growth, with applications ranging from supply chain optimization to web-based GIS platforms built using JavaScript and HTML5.
How is this Geospatial Analytics Industry segmented and which is the largest segment?
The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2017-2022 for the following segments.
Technology
GPS
GIS
Remote sensing
Others
End-user
BFSI
Government and utilities
Telecom
Manufacturing and automotive
Others
Component
Software
Service
Type
Surface & Field Analytics
Network & Location Analytics
Geovisualization
Others
Geography
North America
Canada
US
Europe
Germany
UK
APAC
China
Middle East and Africa
South America
By Technology Insights
The GPS segment is estimated to witness significant growth during the forecast period. The market is driven by various sectors including Defense & Internal Security, Retail & Logistics, Energy & Utilities, Agriculture, Healthcare & Life Sciences, Infrastructure, and GIS. Among these, GPS, a satellite-based radio navigation system, was the largest segment in 2023. Operated by the US Space Force, GPS enables geolocation and time information transmission to receivers, facilitating georeferencing, positioning, navigation, and time and frequency control. This technology is widely used in industries such as logistics, transportation, and surveying, making it a significant contributor to the market's growth. The Energy & Utilities sector also leverages geospatial analytics for infrastructure planning, asset management, and maintenance, further fueling market expansion.
Get a glance at the share of various segments. Request Free Sample
The GPS segment was valued at USD 29.90 billion in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 36% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Request Free Sample
The North American region dominates the market due to the region's early adoption of advanced technologies and the maturity of industries, particularly in healthcare and the industrial sector. The healthcare industry's need for high-level analytics, driven by the COVID-19 pandemic, is a significant factor fueling market growth. In the industrial sector, the abundance of successful technology implementations leads to a faster rate of adoption. Geospatial analytics plays a crucial role in various applications. These applications provide valuable insights for businesses and governments, enabling informed decision-making and improving operational efficien
https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
United States geospatial analytics market size reached USD 25.2 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 60.1 Billion by 2033, exhibiting a growth rate (CAGR) of 10% during 2025-2033. The growing need for facilitating data-driven decisions, along with the rising focus of government bodies on improving situational awareness and monitoring of troops and enemy movements, is primarily propelling the market growth across the country.
Report Attribute
|
Key Statistics
|
---|---|
Base Year
| 2024 |
Forecast Years
|
2025-2033
|
Historical Years
|
2019-2024
|
Market Size in 2024 | USD 25.2 Billion |
Market Forecast in 2033 | USD 60.1 Billion |
Market Growth Rate (2025-2033) | 10% |
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2025-2033. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.
https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
The Vietnam geospatial analytics market size is projected to exhibit a growth rate (CAGR) of 8.90% during 2024-2032. The increasing product utilization by government authorities in various sectors, various technological advancements in satellite technology, remote sensing, and data collection methods, and the rising development of smart cities represent some of the key factors driving the market.
Report Attribute
|
Key Statistics
|
---|---|
Base Year
| 2023 |
Forecast Years
| 2024-2032 |
Historical Years
|
2018-2023
|
Market Growth Rate (2024-2032) | 8.90% |
Geospatial analytics is a field of data analysis that focuses on the interpretation and analysis of geographic and spatial data to gain valuable insights and make informed decisions. It combines geographical information systems (GIS), advanced data analysis techniques, and visualization tools to analyze and interpret data with a spatial or geographic component. It also enables the collection, storage, analysis, and visualization of geospatial data. It provides tools and software for managing and manipulating spatial data, allowing users to create maps, perform spatial queries, and conduct spatial analysis. In addition, geospatial analytics often involves integrating geospatial data with other types of data, such as demographic data, environmental data, or economic data. This integration helps in gaining a more comprehensive understanding of complex phenomena. Moreover, geospatial analytics has a wide range of applications. For example, it can be used in urban planning to optimize transportation routes, in agriculture to manage crop yield and soil quality, in disaster management to assess and respond to natural disasters, in wildlife conservation to track animal migrations, and in business for location-based marketing and site selection.
The Vietnamese government has recognized the importance of geospatial analytics in various sectors, including urban planning, agriculture, disaster management, and environmental monitoring. Initiatives to develop and utilize geospatial data for public projects and policy-making have spurred demand for geospatial analytics solutions. In addition, Vietnam is experiencing rapid urbanization and infrastructure development. Geospatial analytics is critical for effective urban planning, transportation management, and infrastructure optimization. This trend is driving the adoption of geospatial solutions in cities and regions across the country. Besides, Vietnam's agriculture sector is a significant driver of its economy. Geospatial analytics helps farmers and agricultural businesses optimize crop management, soil health, and resource allocation. Consequently, precision farming techniques, enabled by geospatial data, are becoming increasingly popular, which is also propelling the market. Moreover, the development of smart cities in Vietnam relies on geospatial analytics for various applications, such as traffic management, public safety, and energy efficiency. Geospatial data is central to building the infrastructure needed for smart city initiatives. Furthermore, advances in satellite technology, remote sensing, and data collection methods have made geospatial data more accessible and affordable. This has lowered barriers to entry and encouraged the use of geospatial analytics in various sectors. Additionally, the telecommunications sector in Vietnam is expanding, and location-based services, such as navigation and advertising, rely on geospatial analytics. This creates opportunities for geospatial data providers and analytics solutions in the telecommunications industry.
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.
Component Insights:
https://www.imarcgroup.com/CKEditor/2e6fe72c-0238-4598-8c62-c08c0e72a138other-regions1.webp" style="height:450px; width:800px" />
The report has provided a detailed breakup and analysis of the market based on the component. This includes solution and services.
Type Insights:
A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes surface and field analytics, network and location analytics, geovisualization, and others.
Technology Insights:
The report has provided a detailed breakup and analysis of the market based on the technology. This includes remote sensing, GIS, GPS, and others.
Enterprise Size Insights:
A detailed breakup and analysis of the market based on the enterprise size have also been provided in the report. This includes large enterprises and small and medium-sized enterprises.
Deployment Mode Insights:
The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based.
Vertical Insights:
A detailed breakup and analysis of the market based on the vertical have also been provided in the report. This includes automotive, energy and utilities, government, defense and intelligence, smart cities, insurance, natural resources, and others.
Regional Insights:
https://www.imarcgroup.com/CKEditor/bbfb54c8-5798-401f-ae74-02c90e137388other-regions6.webp" style="height:450px; width:800px" />
The report has also provided a comprehensive analysis of all the major regional markets, which include Northern Vietnam, Central Vietnam, and Southern Vietnam.
The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.
Report Features | Details |
---|---|
Base Year of the Analysis | 2023 |
Historical Period |
This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Geospatial data about Wake County, North Carolina Fire Insurance Districts. Export to CAD, GIS, PDF, CSV and access via API.
Our Point of Interest (POI) data supports various location intelligence projects and facilitates the development of precise mapping and navigation tools, location analysis, address validation, and much more. Gain access to highly accurate, clean, and globally scaled POI data featuring over 164 million verified locations across 220 countries. We have been providing this data to companies worldwide for 30 years.
Our data and custom-built software allow easy integration with any application, tool, or software.
Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas: 1. Gaining a Competitive Edge: Utilize point of interest (POI) data to analyze competitors, identify high-opportunity areas, and attract more customers. 2. Enhancing Customer Journeys: Leverage location intelligence to provide personalized, real-time recommendations that boost customer engagement. 3. Optimizing Store Expansion: Select the most profitable locations by analyzing foot traffic, demographics, and competitor insights. 4. Streamlining Deliveries: Improve fulfillment accuracy through address validation, reducing failed shipments and increasing customer satisfaction. 5. Driving Smarter Campaigns: Use geospatial insights to effectively target the right audiences, enhance outreach, and maximize campaign impact.
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas and lines). These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)
https://www.fnfresearch.com/privacy-policyhttps://www.fnfresearch.com/privacy-policy
[230+ Pages Report] The global Geospatial Imagery Analytics market size is expected to grow from USD 61.5 billion to USD 126.01 billion by 2028, at a CAGR of 12.70% from 2022-2028
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes mapping data to track the socio-economic metrics associated with a number of projects funded through the Hurricane Sandy Coastal Resiliency Program. Project locations are found in Delaware, Massachusetts, New Jersey, Maryland, and New York. Data was collected from 2017 to 2020. The map data shows agricultural and cropland data, the area of influence at each site, the flooded areas around project sites, area with reduced flood depth because of the project, buildings and their position above and below water, concentrated animal feeding operations, emergency facilities, schools, correction facilities, natural gas processing plants, waste treatment plants, transportation data including data came from a variety of sources, including railways and roads, and watersheds. Data sources include the Department of Homeland Society, U.S. Census Bureau, Pipeline and Hazardous Materials Safety Administration, and U.S. Government open data.
SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).
SafeGraph Places is a point of interest (POI) data offering with varying location data coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.
SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The France Geospatial Imagery Analytics Market Report is Segmented Based On the Type (Imagery Analytics and Video Analytics), Deployment Mode (On-Premise and Cloud), Organization Size (SMEs and Large Enterprises), and Verticals (Insurance, Agriculture, Defense and Security, Environmental Monitoring, Engineering & Construction, Government and Other Verticals). The Market Sizes and Forecasts are Provided in Terms of Value USD for all the Above Segments.
The newGeoSure Insurance Product (newGIP) provides the potential insurance risk due to natural ground movement. It incorporates the combined effects of the 6 GeoSure hazards on (low-rise) buildings. This data is available as vector data, 25m gridded data or alternatively linked to a postcode database the Derived Postcode Database. A series of GIS (Geographical Information System) maps show the most significant hazard areas. The ground movement, or subsidence, hazards included are landslides, shrink-swell clays, soluble rocks, running sands, compressible ground and collapsible deposits. The newGeoSure Insurance Product uses the individual GeoSure data layers and evaluates them using a series of processes including statistical analyses and expert elicitation techniques to create a derived product that can be used for insurance purposes such as identifying and estimating risk and susceptibility. The Derived Postcode Database (DPD) contains generalised information at a postcode level. The DPD is designed to provide a summary value representing the combined effects of the GeoSure dataset across a postcode sector area. It is available as a GIS point dataset or a text (.txt) file format. The DPD contains a normalised hazard rating for each of the 6 GeoSure themes hazards (i.e. each GeoSure theme has been balanced against each other) and a combined unified hazard rating for each postcode in Great Britain. The combined hazard rating for each postcode is available as a standalone product. The Derived Postcode Database is available in a point data format or text file format. It is available in a range of GIS formats including ArcGIS (.shp), ArcInfo Coverages and MapInfo (.tab). More specialised formats may be available but may incur additional processing costs. The newGeoSure Insurance Product dataset has been created as vector data but is also available as a raster grid. This data is available in a range of GIS formats, including ArcGIS (.shp), ArcInfo coverages and MapInfo (.tab). More specialised formats may be available but may incur additional processing costs. Data for the newGIP is provided for national coverage across Great Britain. The newGeoSure Insurance Product dataset is produced for use at 1:50 000 scale providing 50 m ground resolution. This dataset has been specifically developed for the insurance of low-rise buildings. The GeoSure datasets have been developed to identify the potential hazard for low-rise buildings and those with shallow foundations of less than 2 m deep. The identification of ground instability and other geological hazards can assist regional planners; rapidly identifying areas with potential problems and aid local government offices in making development plans by helping to define land suited to different uses. Other users of these data may include developers, homeowners, solicitors, loss adjusters, the insurance industry, architects and surveyors. Version 7 released June 2015.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
What will be the Size of the GIS Market During the Forecast Period?
Request Free Sample
The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
How is this GIS Industry segmented and which is the largest segment?
The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
Canada
US
Europe
Germany
UK
France
APAC
China
Japan
South Korea
South America
Brazil
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.
Get a glance at the GIS Industry report of share of various segments Request Free Sample
The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th
Historical ownership data of GIS by Cincinnati Specialty Underwriters Insurance CO
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Canada Geospatial Imagery Analytics Market Report is Segmented Based On Type (imagery Analytics and Video Analytics), Deployment Mode (on-Premise and Cloud), Organization Size (SMEs and Large Enterprises), and Verticals (insurance, Agriculture, Defense and Security, Environmental Monitoring, Engineering and Construction, and Government). The Market Size and Forecasts are Provided in Terms of Value USD for all the Segments Mentioned Above.
This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.