The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GIS Database 2002-2005: Project Size = 1,898 acres Fort Larned National Historic Site (including the Rut Site) = 705 acres 16 Map Classes 11 Vegetated 5 Non-vegetated Minimum Mapping Unit = ½ hectare is the program standard but this was modified at FOLS to ¼ acre. Total Size = 229 Polygons Average Polygon Size = 8.3 acres Overall Thematic Accuracy = 92% To produce the digital map, a combination of 1:8,500-scale (0.75 meter pixels) color infrared digital ortho-imagery acquired on October 26, 2005 by the Kansas Applied Remote Sensing Program and 1:12,000-scale true color ortho-rectified imagery acquired in 2005 by the U.S. Department of Agriculture - Farm Service Agency’s Aerial Photography Field Office, and all of the GPS referenced ground data were used to interpret the complex patterns of vegetation and land-use. In the end, 16 map units (11 vegetated and 5 land-use) were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed and revised. One hundred and six accuracy assessment (AA) data points were collected in 2006 by KNSHI and used to determine the map’s accuracy. After final revisions, the accuracy assessment revealed an overall thematic accuracy of 92%.
For decades, TNC’s conservation science and planning has been informed by geospatial technology. This dynamic field combines the disciplines of Geographic Information Systems (GIS), remote sensing and machine learning. At least one in every three TNC staff generates and uses maps to complete tasks such as monitoring preserves in the field and, increasingly through remote technologies, negotiate land and water transactions or illustrate the benefits of ecosystems and the costs of losing them. Together, the TNC Geospatial Systems team and the Geospatial Leadership Council have joined forces to bring you this annual report & map book that features:25 use cases or applications illustrating how geospatial technology is supporting and advancing our conservation work around the worldA global map series from our Global Science and Protect Oceans, Lands and Water teams showing crisis and last chance ecosystems under high development pressure14 feature maps depicting specific conservation projectsResults from our annual survey that reached over 1,500 staff“As we seek to tackle the biggest challenges facing our planet, it is crucial to ensure that our teams and partners are able to leverage the most accurate and rigorous mapping data—and that geospatial professionals conducting this science reflect the diversity of the places we work,” says Jennifer Morris, CEO of The Nature ConservancyFor the first time we have categorized three mapping types that convey all our conservation science and planning work into predictive modeling, prioritization with two aspects (asset & threat mapping and spatial action mapping), and monitoring & evaluation. This edition emphasizes spatial action mapping, or the mapping of strategies in priority places that inform decisions on when, where and what may be the best conservation actions to take.Fundamental to TNC’s mission is a focus on place. Maps are core to our mission in helping us understand the places we work and in engaging audiences through the stories they reveal. In this edition we have initiated the process of creating cartographic guidelines that encourage a cohesive look and feel within TNC while promoting our “conservation mapping brand.”
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The professional map services market is experiencing robust growth, projected to reach $625.6 million in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 7.0% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services across diverse sectors like utilities, construction, transportation, and government is a primary driver. Advanced mapping technologies, including AI-powered mapping and real-time data integration, are enhancing the accuracy and functionality of map services, leading to increased demand. Furthermore, the growing need for precise mapping data for infrastructure planning, urban development, and disaster management is significantly contributing to market growth. The market segmentation reveals a strong reliance on consulting and advisory services, alongside significant demand for deployment and integration, and ongoing support and maintenance. Competition is fierce, with established players like Google, TomTom, and Esri vying for market share alongside emerging innovative companies specializing in niche applications. Geographic expansion is also a key aspect, with North America and Europe currently holding significant market share, but Asia-Pacific exhibiting rapid growth potential driven by infrastructure development and increasing technological adoption. The market's future trajectory appears bright, anticipating continued growth driven by technological advancements and expanding application areas. The integration of Internet of Things (IoT) data into mapping solutions presents a substantial opportunity for market expansion. The increasing reliance on autonomous vehicles and drone technology will further fuel demand for highly accurate and detailed mapping data. However, challenges remain, including data security concerns and the need for robust data management infrastructure. The competitive landscape necessitates continuous innovation and strategic partnerships to secure market share and capitalize on emerging opportunities. The ongoing development of standardized mapping data formats and protocols will play a crucial role in facilitating market growth and interoperability.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We followed methods in Anderson and Merrill (1998) for combining gradient layers into an “ecological land units” map (also referred to as a “biophysical units” map). Our goal was to use this information to create sampling strata that capture the range of environments observed. The Anderson and Merrill (1998) method (implemented as a set of GIS scripts by F. Biasi (2001)) builds an ecological units map by classifying and combining individual environmental gradient maps in a GIS. Maps of aspect, moisture, slope, and slope shape are reclassified and assembled to produce maps of landform units. These landform units are then combined with reclassified elevation and geologic maps to produce a final ecological land units or “ELU” map. We used these methods as a guide to building an ecological land units map for Shenandoah National Park, adapting the procedures for local conditions. Individual steps in the process and maps resulting from intermediate and final stages are described in the report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Physical Points in the Geographic Names Information System (GNIS)This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays physical points from the Geographic Names Information System (GNIS). Per USGS, “the Geographic Names Information System (GNIS) is the federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types.”Physical Points in the Western New York RegionData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Physical Points) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 34 (Geographic Names Information System (GNIS) - USGS National Map Downloadable Data Collection)OGC API Features Link: (Physical Points in the Geographic Names Information System (GNIS) - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: U.S. Board on Geographic NamesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Cultural Resources Theme Community. Per the Federal Geospatial Data Committee (FGDC), Cultural Resources are defined as "features and characteristics of a collection of places of significance in history, architecture, engineering, or society. Includes National Monuments and Icons."For other NGDA Content: Esri Federal Datasets
Dataset representing vegetation mapping performed by the U.S. Forest Service for the South Coast region of California. This dataset, commonly referred to as CALVEG, provides comprehensive spatial and tabular data for existing vegetation. Map attributes consist of vegetation types using the CALVEG classification system and forest structural characteristics such as tree and shrub canopy cover and tree stem diameters. Two vegetation classifications are referenced within CALVEG, “vegetation alliances,” the most detailed classification thatemphasizes species composition, and “wildlife habitat relationships” (WHR), which emphasizes vegetation structure characteristics. CITY-OWNED DATAEvery reasonable effort has been made to assure the accuracy of the data provided; nevertheless, some information may not be accurate. The City of Los Angeles assumes no responsibility arising from use of this information. THE MAPS AND ASSOCIATED DATA ARE PROVIDED WITHOUT WARRANTY OF ANY KIND, either expressed or implied, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. INVASIVE PLANT DATAUse limitationsThe USDA Forest Service makes no warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose, nor assumes any legal liability or responsibility for the accuracy, reliability, completeness or utility of these geospatial data, or for the improper or incorrect use of these geospatial data. These geospatial data and related maps or graphics are not legal documents and are not intended to be used as such. The data and maps may not be used to determine title, ownership, legal descriptions or boundaries, legal jurisdiction, or restrictions that may be in place on either public or private land. Natural hazards may or may not be depicted on the data and maps, and users should exercise due caution. The data are dynamic and may change over time. The user is responsible to verify the limitations of the geospatial data and to use the data accordingly.EXISTING VEGETATION DATAUse limitationsThis product is reproduced from geospatial information prepared by the U.S. Department of Agriculture, Forest Service. By removing the contents of this package or taking receipt of these files via electronic file transfer methods, you understand that the data stored on this media is in draft condition. Represented features may not be in an accurate geographic location. The Forest Service makes no expressed or implied warranty, including warranty of merchantability and fitness, with respect to the character, function, or capabilities of the data or their appropriateness for any user's purposes. The Forest Service reserves the right to correct, update, modify, or replace this geospatial information without notification. For more information, contact the Remote Sensing Lab, 916-640-1256.The Forest Service uses the most current and complete data available. GIS data and product accuracy may vary. They may be developed from sources of differing accuracy; accurate only at certain scales; based on modeling or interpretation; incomplete while being created or revised; etc. Using GIS products for purposes other than those for which they were created, may yield inaccurate or misleading results. The Forest Service reserves the right to correct, update, modify or replace GIS products without notification.TERM OF USECALVEG DATADisclaimer: The U.S. Department of Agriculture, Forest Service, has prepared this geospatial information. By taking receipt of these files via electronic file transfer methods, you understand that the data stored on this media is in draft condition. Represented features may not be in an accurate geographic location. The Forest Service makes no expressed or implied warranty, including warranty of merchantability and fitness, with respect to the character, function, or capabilities of the data or their appropriateness for any user's purposes. The Forest Service reserves the right to correct, update, modify, or replace this geospatial information without notification. For more information, contact the Regional Geospatial Data Manager, (707) 562-9106.
JALBTCX National Coastal Mapping Program Derived Products: Great Lakes & Ohio River DivisionThe layers depicted in this web map were developed to serve regional geospatial data needs of USACE Districts and agency partners to discover and download products derived from USACE National Coastal Mapping Program (NCMP) high resolution, topo-bathymetric lidar and imagery. The USACE NCMP acquires high-resolution, high-accuracy topographic/bathymetric lidar elevation and imagery on a recurring basis along the sandy shorelines of the US. The program's survey footprint includes an approximately 1-mile wide swath of topography, bathymetry and imagery 500-m onshore and 1000-m offshore. The standard suite of NCMP data products include topographic/bathymetric lidar point clouds, digital surface and elevation models, shoreline vectors and both true-color and hyperspectral imagery mosaics. Value-added derivative information products may include laser reflectance images, landcover classification images, volume change metrics, and the products to help address District project requirements. USACE Headquarters initiated the NCMP in 2004. The program's update cycle follows counter-clockwise along the US West Coast, Gulf Coast, East Coast and Great Lakes approximately every 5 years. Surveys in support of USACE project-specific missions and external partners are included constituent to the current NCMP schedule and reimbursable funding. All work is coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping (IWGOCM) and the 3D Elevation Program (3DEP).NCMP operations are executed by the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX). The JALBTCX mission is to perform operations, research and development in airborne lidar bathymetry and complementary technologies to support the coastal mapping and charting requirements of the US Army Corps of Engineers, the US Naval Meteorology and Oceanography Command and the National Oceanic and Atmospheric Administration. Survey operations are conducted worldwide using the Coastal Zone Mapping and Imaging (CZMIL) system and other industry-based coastal mapping and charting systems. CZMIL is JALBTCX's in-house survey capability that includes and Optech International, CZMIL 03-1 lidar instrument with simultaneous topographic and bathymetric capabilities. CZMIL is integrated with an Itres CASI-1500 hyperspectral imager and an 80 MP Leica RCD30 RGBN camera. CZMIL collects 10-kHz lidar data with spatially- and temporally-concurrent digital true-color and hyperspectral imagery.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Advanced Weather Interactive Processing System (AWIPS) uses shapefiles for base maps in the system. These shapefiles contain boundaries of areas used by NWS for forecasts and warnings as well as map backgrounds.NWS BordersThe County Warning Area boundaries are the counties/zones for which each Weather Forecast Office (WFO) is responsible for issuing forecasts and warnings. The shapefile was created by aggregating public zones with the same CWA designation into a single polygon and manually adjusting the boundaries of the exceptions to the rule.The NWS county and state borders are background map used internally in NWS.Coastal Marine Zone ForecastThis map layer contains links to NWS marine weather forecasts for coastal or nearshore waters within 20nm of shore out to Day 5. It includes predictions on the likelihood of precipitation and/or reduced visibility, surface wind direction and speed, seas or combined seas, and icing. Air temperature forecasts are optional. The forecasts will also include any marine weather advisories, watches, and/or warnings. The purpose of the forecasts is to support and promote safe transportation across the coastal waters. The forecasts are issued twice per day with updates as necessary by NWS Weather Forecast Offices (WFOs) along the coast and Great Lakes.Offshore Zone ForecastsThis map layer contains links to NWS marine weather forecasts for offshore waters beyond 20 or 30nm of shore out to Day 5. The forecast provides information to mariners who travel on the oceanic waters adjacent to the U.S., its territorial coastal waters and the Caribbean Sea. The forecasts include predictions on the likelihood of precipitation and/or reduced visibility, surface wind direction and speed, seas and likelihood of icing out to Day 5 along with information about any warnings. The offshore forecasts for the Western North Atlantic and Eastern North Pacific Oceans are produced by NWS/NCEP's Ocean Prediction Center. The offshore forecasts for the Gulf of Mexico and Caribbean Sea are issued by the NWS/NCEP National Hurricane Center's Tropical Analysis and Forecast Branch (TAFB). OPC and NHC/TAFB issues the forecasts four times daily at regular intervals, with updates when necessary. The offshore forecast for the waters around Hawaii are issued by the NWS Weather Forecast Office in Honolulu, HI four times daily at regular intervals, with updates when necessary. The offshore forecasts for Alaska waters in the Bering Sea and Gulf of Alaska are issued by NWS Weather Forecast Offices in Alaska at least twice a day with updates as necessary. The WFOs in Alaska include WFO Anchorage, WFO Fairbanks, and WFO Juneau.Public Weather Zone ForecastsThis layer includes links to NWS web pages posting the latest NWS surface weather forecasts, a zone-type forecast providing the average forecast conditions across the zone, usually at the county-scale or sub-county scale. These text forecasts include predictions of weather, sky cover, maximum and minimum surface air temperatures, surface wind direction and speed, and probability of precipitation out to 7 days into the future. In addition, the forecast highlights at the top include any active weather advisories, watches, and/or warnings. These zone predictions are derived from gridded forecasts created by NWS Weather Forecast Offices throughout the U.S. The text weather forecasts are usually issued in the early morning (e.g. 4AM LT) and early evening (4PM LT). They are updated during late mornings and late night and during fast changing weather conditions.Fire Weather Zone ForecastsThis layer includes links to NWS web pages posting the latest NWS Fire Weather Planning Forecasts, a zone-type forecast providing the average fire weather conditions across the zone. According to the NWS, the forecast is "used by land management personnel primarily for input in decision-making related to pre-suppression and other planning." The forecast is valid from the time of issuance through day five and sometimes through day seven and usually has a minimum of three 12-hour time periods. The forecast will have included a discussion of weather patterns affecting the forecast zone or area, identification of any active fire weather watches/warnings and a table of predicted fire weather variables for the next two days: 1) sky/weather conditions, 2) max/min air temperatures, 3) max/min relative humidity, 4) 0-minute average wind direction/speed at 20 feet and sometimes at another height (e.g. 10,000, 15,000 ft), 5) precipitation amount, duration, and timing, 6) mixing height, 7) transport winds, 8) vent category, and 9) several fire weather indices such as Haines Index, Lightning Activity (LAL), Chance of Wetting Rainfall (CWR), Dispersion Index, Low Visibility Occurrence Risk Index (LVORI), and Max LVORI. In addition, it will usually have a forecast in plain text for days 3 to 7. Sometimes an optional outlook of expected conditions for day 6 or possibly for day 6 and 7 is expected. The forecasts are issued by NWS WFOs at least once daily during the local fire season.Metadata:CWA: https://www.weather.gov/gis/CWAmetadataCoastal Marine: https://www.weather.gov/gis/CoastalMarineMetadataOffshore: https://www.weather.gov/gis/OffshoreZoneMetadataPublic Zones: https://www.weather.gov/gis/PublicZoneMetadataFire Zones: https://www.weather.gov/gis/FireZoneMetadataCounties: https://www.weather.gov/gis/CountyMetadataStates: https://www.weather.gov/gis/StateMetadataLink to data download: https://www.weather.gov/gis/AWIPSShapefilesQuestions/Concerns about the service, please contact the DISS GIS teamTime Information:This service is not time enabled
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Places in the Geographic Names Information System (GNIS)This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays populated places from the Geographic Names Information System (GNIS). Per USGS, “the Geographic Names Information System (GNIS) is the federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types.”Trenton, New JerseyData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Places) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 34 (Geographic Names Information System (GNIS) - USGS National Map Downloadable Data Collection)OGC API Features Link: (Populated Places in the Geographic Names Information System (GNIS) - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: U.S. Board on Geographic NamesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Cultural Resources Theme Community. Per the Federal Geospatial Data Committee (FGDC), Cultural Resources are defined as "features and characteristics of a collection of places of significance in history, architecture, engineering, or society. Includes National Monuments and Icons."For other NGDA Content: Esri Federal Datasets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Landmarks and Government BuildingsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays Cemeteries, Post Offices, City/Town Halls, Courthouses, State Capitols, State Supreme Courts, The White House, U.S. Capitol, U.S. Supreme Court, Historic Sites/Points of Interest, and National Symbols/Monuments in the U.S. Per the USGS, "Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations."Supreme Court of WyomingData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Landmarks & Government Buildings) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 135 (USGS National Structures Dataset - USGS National Map Downloadable Data Collection)OGC API Features Link: (Landmark Structures - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: The National MapFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global 3D mapping and modeling market is expected to grow significantly in the next few years as demand increases for detailed and accurate representations of physical environments in three-dimensional space. Estimated to be valued at USD 38.62 billion in the year 2025, the market was expected to grow at a CAGR of 14.5% from 2025 to 2033 and was estimated to reach an amount of USD 90.26 billion by the end of 2033. The high growth rate is because of improvement in advanced technologies with the development of high-resolution sensors and methods of photogrammetry that make possible higher-resolution realistic and immersive 3D models.Key trends in the market are the adoption of virtual and augmented reality (VR/AR) applications, 3D mapping with smart city infrastructure, and increased architecture, engineering, and construction utilization of 3D models. Other factors are driving the growing adoption of cloud-based 3D mapping and modeling solutions. The solutions promise scalability, cost-effectiveness, and easy access to 3D data, thus appealing to business and organizations of all sizes. Recent developments include: Jun 2023: Nomoko (Switzerland), a leading provider of real-world 3D data technology, announced that it has joined the Overture Maps Foundation, a non-profit organization committed to fostering collaboration and innovation in the geospatial domain. Nomoko will collaborate with Meta, Amazon Web Services (AWS), TomTom, and Microsoft, to create interoperable, accessible 3D datasets, leveraging its real-world 3D modeling capabilities., May 2023: The Sanborn Map Company (Sanborn), an authority in 3D models, announced the development of a powerful new tool, the Digital Twin Base Map. This innovative technology sets a new standard for urban analysis, implementation of Digital Cities, navigation, and planning with a fundamental transformation from a 2D map to a 3D environment. The Digital Twin Base Map is a high-resolution 3D map providing unprecedented detail and accuracy., Feb 2023: Bluesky Geospatial launched the MetroVista, a 3D aerial mapping program in the USA. The service employs a hybrid imaging-Lidar airborne sensor to capture highly detailed 3D data, including 360-degree views of buildings and street-level features, in urban areas to create digital twins, visualizations, and simulations., Feb 2023: Esri, a leading global provider of geographic information system (GIS), location intelligence, and mapping solutions, released new ArcGIS Reality Software to capture the world in 3D. ArcGIS Reality enables site, city, and country-wide 3D mapping for digital twins. These 3D models and high-resolution maps allow organizations to analyze and interact with a digital world, accurately showing their locations and situations., Jan 2023: Strava, a subscription-based fitness platform, announced the acquisition of FATMAP, a 3D mapping platform, to integrate into its app. The acquisition adds FATMAP's mountain-focused maps to Strava's platform, combining with the data already within Strava's products, including city and suburban areas for runners and other fitness enthusiasts., Jan 2023: The 3D mapping platform FATMAP is acquired by Strava. FATMAP applies the concept of 3D visualization specifically for people who like mountain sports like skiing and hiking., Jan 2022: GeoScience Limited (the UK) announced receiving funding from Deep Digital Cornwall (DDC) to develop a new digital heat flow map. The DDC project has received grant funding from the European Regional Development Fund. This study aims to model the heat flow in the region's shallower geothermal resources to promote its utilization in low-carbon heating. GeoScience Ltd wants to create a more robust 3D model of the Cornwall subsurface temperature through additional boreholes and more sophisticated modeling techniques., Aug 2022: In order to create and explore the system's possibilities, CGTrader worked with the online retailer of dietary supplements Hello100. The system has the ability to scale up the generation of more models, and it has enhanced and improved Hello100's appearance on Amazon Marketplace.. Key drivers for this market are: The demand for 3D maps and models is growing rapidly across various industries, including architecture, engineering, and construction (AEC), manufacturing, transportation, and healthcare. Advances in hardware, software, and data acquisition techniques are making it possible to create more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations.
. Potential restraints include: The acquisition and processing of 3D data can be expensive, especially for large-scale projects. There is a lack of standardization in the 3D mapping modeling industry, which can make it difficult to share and exchange data between different software and systems. There is a shortage of skilled professionals who are able to create and use 3D maps and models effectively.. Notable trends are: 3D mapping and modeling technologies are becoming essential for a wide range of applications, including urban planning, architecture, construction, environmental management, and gaming. Advancements in hardware, software, and data acquisition techniques are enabling the creation of more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations..
This 1m Digital Terrain Model (DTM) is derived from bare-ground Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. This dataset is better suited for derived layers such as slope angle, aspect, and contours. The DTM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DTM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DTM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Surface Model (DSM), is a first-stop elevation layer. A processing report and readme file are included with this data release. The DTM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
This 1m Digital Surface Model (DSM) shaded relief is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM shaded relief has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. This shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM dataset is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
The Digital Geomorphic-GIS Map of Cat Island (5-meter accuracy 2007 mapping), Mississippi is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cati_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (cati_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cati_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cati_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cati_geomorphology_metadata.txt or cati_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:11,500 and United States National Map Accuracy Standards features are within (horizontally) 9.7 meters or 31.9 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The National Waterway Network (NWN) is a geographic database of navigable waterways and channels in and around the United States, for analytical studies of navigation performance, for compiling commodity flow statistics, and for mapping purposes. The NWN is comprised of a link database and a node database. Links are line strings, which consist of beginning and end points (nodes) with intermediate vertices (shape points). Links represent either actual shipping lanes (i.e., channels, Intracoastal Waterways, sea lanes, rivers) or serve as representative paths in open water (where no defined shipping paths exist). Nodes may represent physical entities such as river confluence's, ports/facilities, and intermodal terminals, USACE nodes, or may be inserted for analytical purposes (i.e., to facilitate routing).
This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Following development of vegetation classifications after plot sampling, the preliminary vegetation map was further edited and refined in 2005. Using ArcGIS 9.0, polygon boundaries were revised on-screen based on plot data and additional field observations collected during 2004 field visits. Field notes and limited field mapping supplemented GIS mapping. Each polygon was attributed with a map class name that is the common name of a USNVC association, a park-specific map class name representing a variant of an association, or an Anderson Level II use/land cover map class based on plot data, field observations, aerial photography signatures, and topographic maps. Map units in the 2005 vegetation map were equivalent to the association level with few exceptions. The overall 2005 map accuracy and Kappa index was 76%, which fell below the USGS/NPS vegetation mapping protocol requirement of 80%. Revisions were subsequently made to the 2005 vegetation map to increase the accuracy of the final product. The final 2007 vegetation map accuracy was 85.7% and Kappa index was 84.6%.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Following the development of the vegetation classification, the vegetation map was further edited and refined in 2005 to develop an association-level vegetation map. Using ArcGIS 9.0, polygon boundaries were revised onscreen based on the plot data and additional informal field observations collected while in the field during plot sampling. Field notes and limited field mapping supplemented the GIS mapping. Given the large amount of time used in gathering plot data, further ground-truthing was minimal. Each polygon was attributed with the name of a USNVC association or a land use/land cover map class based on plot data, field observations, aerial photography signatures, and topographic maps. The vegetation is mapped to the association level with one exception—because of their small size and interdigitization on the landscape, three of the herbaceous wetland communities, Bluejoint Wet Meadow (CEGL005174), Medium-depth Emergent Marsh (CEGL006519), and Cattail Marsh (CEGL006513) were mapped as a single map class: the Emergent Marsh - Shrub Swamp System. The Enriched Hardwood Forest Seeps, small occurrences within upland forests that are distinguished by their herb flora, are less than the minimum mapping unit (0.5 ha) and were not mapped. The shapefile was projected in Universal Transverse Mercator (UTM) Zone 18 North, North American Datum (NAD) 1983.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).