https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
In support of Project P176842, we have started collecting data on a series of AOIs in which we will improve publicly available geospatial data in support of ongoing operations in situations of forced displacement (FDP). This repository includes data collected to perform baseline assessments and final, improved datasets following improvement efforts.
Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts The federal government collects, maintains, and uses geospatial information—data linked to specific geographic locations—to help support varied missions, including national security and natural resources conservation. To coordinate geospatial activities, in 1994 the President issued an executive order to develop a National Spatial Data Infrastructure—a framework for coordination that includes standards, data themes, and a clearinghouse. GAO was asked to review federal and state coordination of geospatial data. GAO’s objectives were to (1) describe the geospatial data that selected federal agencies and states use and how much is spent on geospatial data; (2) assess progress in establishing the National Spatial Data Infrastructure; and (3) determine whether selected federal agencies and states invest in duplicative geospatial data. To do so, GAO identified federal and state uses of geospatial data; evaluated available cost data from 2013 to 2015; assessed FGDC’s and selected agencies’ efforts to establish the infrastructure; and analyzed federal and state datasets to identify duplication. What GAO Found Federal agencies and state governments use a variety of geospatial datasets to support their missions. For example, after Hurricane Sandy in 2012, the Federal Emergency Management Agency used geospatial data to identify 44,000 households that were damaged and inaccessible and reported that, as a result, it was able to provide expedited assistance to area residents. Federal agencies report spending billions of dollars on geospatial investments; however, the estimates are understated because agencies do not always track geospatial investments. For example, these estimates do not include billions of dollars spent on earth-observing satellites that produce volumes of geospatial data. The Federal Geographic Data Committee (FGDC) and the Office of Management and Budget (OMB) have started an initiative to have agencies identify and report annually on geospatial-related investments as part of the fiscal year 2017 budget process. FGDC and selected federal agencies have made progress in implementing their responsibilities for the National Spatial Data Infrastructure as outlined in OMB guidance; however, critical items remain incomplete. For example, the committee established a clearinghouse for records on geospatial data, but the clearinghouse lacks an effective search capability and performance monitoring. FGDC also initiated plans and activities for coordinating with state governments on the collection of geospatial data; however, state officials GAO contacted are generally not satisfied with the committee’s efforts to coordinate with them. Among other reasons, they feel that the committee is focused on a federal perspective rather than a national one, and that state recommendations are often ignored. In addition, selected agencies have made limited progress in their own strategic planning efforts and in using the clearinghouse to register their data to ensure they do not invest in duplicative data. For example, 8 of the committee’s 32 member agencies have begun to register their data on the clearinghouse, and they have registered 59 percent of the geospatial data they deemed critical. Part of the reason that agencies are not fulfilling their responsibilities is that OMB has not made it a priority to oversee these efforts. Until OMB ensures that FGDC and federal agencies fully implement their responsibilities, the vision of improving the coordination of geospatial information and reducing duplicative investments will not be fully realized. OMB guidance calls for agencies to eliminate duplication, avoid redundant expenditures, and improve the efficiency and effectiveness of the sharing and dissemination of geospatial data. However, some data are collected multiple times by federal, state, and local entities, resulting in duplication in effort and resources. A new initiative to create a national address database could potentially result in significant savings for federal, state, and local governments. However, agencies face challenges in effectively coordinating address data collection efforts, including statutory restrictions on sharing certain federal address data. Until there is effective coordination across the National Spatial Data Infrastructure, there will continue to be duplicative efforts to obtain and maintain these data at every level of government.https://www.gao.gov/assets/d15193.pdfWhat GAO Recommends GAO suggests that Congress consider assessing statutory limitations on address data to foster progress toward a national address database. GAO also recommends that OMB improve its oversight of FGDC and federal agency initiatives, and that FGDC and selected agencies fully implement initiatives. The agencies generally agreed with the recommendations and identified plans to implement them.
description: A geospatial interface will be developed using ArcIMS software. The interface will provide a means of accessing information stored in the SOFIA database and the SOFIA data exchange web site through a geospatial query. The spatial data will be served using the ArcSDE software, which provides a mechanism for storing spatial data in a relational database. A spatial database will be developed from existing data sets, including national USGS data sets, the Florida Geographic Digital Library, and other available data sets. Additional data sets will be developed from the published data sets available from PBS and other projects.; abstract: A geospatial interface will be developed using ArcIMS software. The interface will provide a means of accessing information stored in the SOFIA database and the SOFIA data exchange web site through a geospatial query. The spatial data will be served using the ArcSDE software, which provides a mechanism for storing spatial data in a relational database. A spatial database will be developed from existing data sets, including national USGS data sets, the Florida Geographic Digital Library, and other available data sets. Additional data sets will be developed from the published data sets available from PBS and other projects.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract : The search for the most appropriate GIS data model to integrate, manipulate and analyse spatio-temporal data raises several research questions about the conceptualisation of geographic spaces. Although there is now a general consensus that many environmental phenomena require field and object conceptualisations to provide a comprehensive GIS representation, there is still a need for better integration of these dual representations of space within a formal spatio-temporal database. The research presented in this paper introduces a hybrid and formal dual data model for the representation of spatio-temporal data. The whole approach has been fully implemented in PostgreSQL and its spatial extension PostGIS, where the SQL language is extended by a series of data type constructions and manipulation functions to support hybrid queries. The potential of the approach is illustrated by an application to underwater geomorphological dynamics oriented towards the monitoring of the evolution of seabed changes. A series of performance and scalability experiments are also reported to demonstrate the computational performance of the model.Data Description : The data set used in our research is a set of bathymetric surveys recorded over three years from 2009 to 2011 as Digital Terrain Models (DTM) with 2m grid spacing. The first survey was carried out in February 2009 by the French hydrographic office, the second one was recorded on August-September 2010 and the third in July 2011, both by the “Institut Universitaire Européen de la Mer”.
description: The purpose of the IGDC is to help users find GIS data for the state of Iowa. The site is a cooperative effort between the Iowa Geographic Information Council and local, state, federal and other GIS data producers in Iowa. Users may search by location or topic for available data, many of which have links to where data can be directly downloaded. Data producers are encouraged to register for an account and publish metadata for their GIS data collections so the public can easily find it. The site is maintained by the Iowa State University's GIS Support and Research Facility.; abstract: The purpose of the IGDC is to help users find GIS data for the state of Iowa. The site is a cooperative effort between the Iowa Geographic Information Council and local, state, federal and other GIS data producers in Iowa. Users may search by location or topic for available data, many of which have links to where data can be directly downloaded. Data producers are encouraged to register for an account and publish metadata for their GIS data collections so the public can easily find it. The site is maintained by the Iowa State University's GIS Support and Research Facility.
Presentation for AWRA Geospatial Technologies Conference May 10, 2022 https://www.awra.org/Members/Events_and_Education/Events/2022_GIS_Conference/2022_GIS_Conference.aspx
HydroShare is a web-based repository and hydrologic information system operated by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) for users to share, collaborate around, and publish data, models, scripts, and applications associated with water related research. It serves as a repository for data and models to meet Findable, Accessible, Interoperable, and Reusable (FAIR) open data mandates. Beyond content storage, the HydroShare repository also links with connected computational systems providing immediate value to users through the ability to reduce the needs for software installation and configuration and to document workflows, enhancing reproducibility. These approaches have facilitated considerable sharing and publication of data associated with research in HydroShare, enabling its re-use and the integration of data from multiple users to support broader synthesis studies. Data types supported include multidimensional netCDF, time series, geographic rasters and features. For some of these, standard data services, such as OpenDAP services for netCDF or Open Geospatial Consortium web services for geographic data types are automatically established when data is made public, improving machine readability and system interoperability. This presentation will describe geospatial data in HydroShare focusing on the geospatial feature and raster aggregations used to hold geospatial data and the functionality developed to automatically harvest metadata from these data types, simplifying the process of metadata creation for users. We will also describe how geospatial data services established for public resources holding geospatial data in HydroShare enable the data to be accessed by third party web applications adding to the functionality supported by HydroShare as a content storage element within a software ecosystem of interoperating systems.
In 2015, the second of several Regional Stream Quality Assessments (RSQA) was done in the southeastern United States. The Southeast Stream Quality Assessment (SESQA) was a study by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) project. One of the objectives of the RSQA, and thus the SESQA, is to characterize the relationships between water-quality stressors and stream ecology and subsequently determine the relative effects of these stressors on aquatic biota within the streams (Van Metre and Journey, 2014). To meet this objective, a framework of fundamental geospatial data was required to develop physical and anthropogenic characteristics of the study region, sampled sites and corresponding watersheds, and riparian zones. This dataset represents the 115 water-chemistry sites sampled for the SESQA, and is one of the four fundamental geospatial data layers that were developed for the Southeast study.
This tool is a cool way to view geospatial data online! no special program necessary. This tool is a cool way to view geospatial data online! no special program necessary. This tool is a cool way to view geospatial data online! no special program necessary.
This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
The list of study sites, meteorological stations and locations of interest that are shown on the Bonanza Creek Long Term Ecological Research site (BNZ LTER) internet map server (IMS, available at http://www.lter.uaf.edu/ims_intro.cfm) is generated from the LTER study sites database. The information is converted into a shapefile and posted to the IMS. Some study sites shown on the main LTER website will not appear on the IMS because they do not have location coordinates. In all cases the most up-to-date information will be found on the (study sites website ).
The spatial information represented on the IMS is available to the public according to the restrictions outlined in the LTER data policy. The dataset represented here consists of the map layers shown on the IMS. The information consists of shapefiles in Environmental Systems Research Institute (ESRI) format. Users of this dataset should be aware that the contents are dynamic. Portions of the information shown on the IMS are derived from the Bonanza Creek LTER databank and are constantly being updated.
The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 2 (PLACE II) data set contains estimates of national-level aggregations of territorial extent and population size by biome, climate zone, coastal proximity zone, elevation zone, and population density zone, a compendium of nearly 300 variables for 228 countries. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The U.S. Geological Survey developed this dataset as part of the Colorado Front Range Infrastructure Resources Project (FRIRP). One goal of the FRIRP was to provide information on the availability of those hydrogeologic resources that are either critical to maintaining infrastructure along the northern Front Range or that may become less available because of urban expansion in the northern Front Range. This dataset extends from the Boulder-Jefferson County line on the south, to the middle of Larimer and Weld Counties on the North. On the west, this dataset is bounded by the approximate mountain front of the Front Range of the Rocky Mountains; on the east, by an arbitrary north-south line extending through a point about 6.5 kilometers east of Greeley. This digital geospatial dataset consists of depth-to-water (unsaturated-thickness) contours that were generated from hydrogeologic data with Geographic Information System (GIS) software.
This dataset provides resources for identifying flight lines of interest for the MODIS/ASTER Airborne Simulator (MASTER) instrument based on spatial and temporal criteria. MASTER first flew in 1998 and has ongoing deployments as a Facility Instrument in the NASA Airborne Science Program (ASP). MASTER is a joint project involving the Airborne Sensor Facility (ASF) at the Ames Research Center, the Jet Propulsion Laboratory (JPL), and the Earth Resources Observation and Science Center (EROS). The primary goal of these airborne campaigns is to demonstrate important science and applications research that is uniquely enabled by the full suite of MASTER thermal infrared bands as well as the contiguous spectroscopic measurements of the AVIRIS (also flown in similar campaigns), or combinations of measurements from both instruments. This dataset includes a table of flight lines with dates, bounding coordinates, site names, investigators involved, flight attributes, and associated campaigns for the MASTER Facility Instrument Collection. A shapefile containing flights for all years, a GeoJSON version of the shapefile, and separate KMZ files for each year allow users to visualize flight line locations using GIS software.
These geospatial data characterize the potential for geographic overlap among land-use practices and between land-use and climate change on the Colorado Plateau—a dryland region experiencing rapid changes in land-use and facing aridification. They were used to characterize spatial patterns and temporal trends in aridification, land-use, and recreation at the county and 10-km2 grid scales. Increasing trends and overlapping areas of high intensity for use, including oil and gas development and recreation, and climate drying, suggest areas with high potential to experience detrimental effects to the recreation economy, water availability, vegetation and wildlife habitat, and spiritual and cultural resources. Patterns of overlap in high-intensity land-use and climate drying differ from the past, indicating the potential for novel impacts and suggesting that land managers and planners may require new strategies to adapt to changing conditions. This analytical framework for assessing the potential impacts of overlapping land-use and climate change could be applied with other drivers of change or to other regions to create scenarios at various spatial scales in support of natural resource planning efforts.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Spatially-explicit data is increasingly becoming available across disciplines, yet they are often limited to a specific domain. In order to use such datasets in a coherent analysis, such as to decide where to target specific types of agricultural investment, there should be an effort to make such datasets harmonized and interoperable. For Africa South of the Sahara (SSA) region, the HarvestChoice CELL5M Database was developed in this spirit of moving multidisciplinary data into one harmonized, geospatial database. The database includes over 750 biophysical and socio-economic indicators, many of which can be easily expanded to global scale. The CELL5M database provides a platform for cross-cutting spatial analyses and fine-grain visualization of the mix of farming systems and populations across SSA. It was created as the central core to support a decision-making platform that would enable development practitioners and researchers to explore multi-faceted spatial relationships at the nexus of poverty, health and nutrition, farming systems, innovation, and environment. The database is a matrix populated by over 350,000 grid cells covering SSA at five arc-minute spatial resolution. Users of the database, including those conduct researches on agricultural policy, research, and development issues, can also easily overlay their own indicators. Numerical aggregation of the gridded data by specific geographical domains, either at subnational level or across country borders for more regional analysis, is also readily possible without needing to use any specific GIS software. See the HCID database (http://dx.doi.org/10.7910/DVN/MZLXVQ) for the geometry of each grid cell. The database also provides standard-compliant data API that currently powers several web-based data visualization and analytics tools.
This data supports the paper entitled "Mapping the landscape of geospatial data citations". The dataset covers geospatial data-intensive research papers published between 2015-2018 retrieved using Scopus. The article's citations were assessed for data citation occurances, and coded using a data citation classification. Data were enhanced and linked to subject coverage and journal policy status information using Excel & SPSS. For more information about how the data were created and coded please review the 'Methodology' section of the paper. More information is provided below, including supplemental documentation and related publications. Abstract (paper) ABSTRACT Data citations, similar to article and other research citations, are important references to research data that underlie published research results. In support of open science directives, these citations must adhere to specific conventions in terms of consistency of both placement within an article, and the actual availability or access to research data. To better understand the level to which geospatial research data are currently cited, we undertook a study to analyse the rate of data citation within a set of data-intensive geospatial research articles. After analysing 1717 scholarly articles published between 2015 and 2018, we found that very few, or 78 (5%), meaningfully cited primary or secondary geospatial data sources in the cited references section of the article. Even fewer researchers, only 25 or 1.5%, were found to have cited data using a DOI. Given the relatively low data citation rate, a focus on contributing factors including barriers to citing geospatial data is needed. And while open sharing requirements for geospatial data may change over time, driving data citation as a result, understanding benchmarks for data citation for monitoring purposes is useful.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Geospatial Data Gateway (GDG) provides access to a map library of over 100 high resolution vector and raster layers in the Geospatial Data Warehouse. It is the one stop source for environmental and natural resource data, available anytime, from anywhere. It allows a user to choose an area of interest, browse and select data, customize the format, then download or have it shipped on media. The map layers include data on: Public Land Survey System (PLSS), Census data, demographic statistics, precipitation, temperature, disaster events, conservation easements, elevation, geographic names, geology, government units, hydrography, hydrologic units, land use and land cover, map indexes, ortho imagery, soils, topographic images, and streets and roads. This service is made available through a close partnership between the three Service Center Agencies (SCA): Natural Resources Conservation Service (NRCS), Farm Service Agency (FSA), and Rural Development (RD). Resources in this dataset:Resource Title: Geospatial Data Gateway. File Name: Web Page, url: https://gdg.sc.egov.usda.gov This is the main page for the GDG that includes several links to view, download, or order various datasets. Find additional status maps that indicate the location of data available for each map layer in the Geospatial Data Gateway at https://gdg.sc.egov.usda.gov/GDGHome_StatusMaps.aspx
The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) data set contains estimates of national-level aggregations in urban, rural, and total designations of territorial extent and population size by biome, climate zone, coastal proximity zone, elevation zone, and population density zone, for 232 statistical areas (countries and other UN recognized territories). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
In support of Project P176842, we have started collecting data on a series of AOIs in which we will improve publicly available geospatial data in support of ongoing operations in situations of forced displacement (FDP). This repository includes data collected to perform baseline assessments and final, improved datasets following improvement efforts.