The list of study sites, meteorological stations and locations of interest that are shown on the Bonanza Creek Long Term Ecological Research site (BNZ LTER) internet map server (IMS, available at http://www.lter.uaf.edu/ims_intro.cfm) is generated from the LTER study sites database. The information is converted into a shapefile and posted to the IMS. Some study sites shown on the main LTER website will not appear on the IMS because they do not have location coordinates. In all cases the most up-to-date information will be found on the (study sites website ).
The spatial information represented on the IMS is available to the public according to the restrictions outlined in the LTER data policy. The dataset represented here consists of the map layers shown on the IMS. The information consists of shapefiles in Environmental Systems Research Institute (ESRI) format. Users of this dataset should be aware that the contents are dynamic. Portions of the information shown on the IMS are derived from the Bonanza Creek LTER databank and are constantly being updated.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
TerraMetrics, Inc., proposes a Phase II R/R&D program to implement the TerraBlocksTM Server architecture that provides geospatial data authoring, storage and delivery capabilities. TerraBlocks enables successful deployment, display and visual interaction of diverse, massive, multi-dimensional science datasets within popular web-based geospatial platforms like Google Earth and NASA World Wind.
TerraBlocks is a wavelet-encoded data storage technology and server architecture for NASA science data deployment into widely available web-based geospatial applications. The TerraBlocks approach provides dynamic geospatial data services with an emphasis on 1) server and data storage efficiency, 2) maintaining server-to-client science data integrity and 3) offering client-specific delivery of large Earth science geospatial datasets. The TerraBlocks approach bridges the gap between inflexible, but fast, pre-computed tile delivery approaches and highly flexible, but slower, map services approaches.
The pursued technology exploits the use of a network-friendly, wavelet-compressed data format and server architecture that extracts and delivers appropriately-sized blocks of multi-resolution geospatial data to geospatial client applications on demand and in interactive real time.
The Phase II project objective is to provide a complete and fully-functional prototype TerraBlocks data authoring and server software package delivery to NASA and simultaneously set the stage for commercial availability. The Phase III objective is to commercially deploy the TerraBlocks technology, with the collaboration of our commercial and government partners, to provide the enabling basis for widely available third-party data authoring and web-based geospatial application data services.
Paper and poster presented at the SIOS Polar Night Week conference in Longyearbyen, Spitsbergen. January 24, 2025
World framework data from Intergraph Corporation
The Geographic Names Information System (GNIS) actively seeks data from and partnerships with Government agencies at all levels and other interested organizations. The GNIS is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.
TerraMetrics, Inc., proposes an SBIR Phase I R/R&D program to investigate and develop a key web services architecture that provides data processing, storage and delivery capabilities and enables successful deployment, display and visual interaction of diverse, massive, multi-dimensional science datasets within popular web-based geospatial platforms like Google Earth, Google Maps, NASA's World Wind and others. The proposed innovation exploits the use of a wired and wireless, network-friendly, wavelet-compressed data format and server architecture that extracts and delivers appropriately-sized blocks of multi-resolution geospatial data to client applications on demand and in real time. The resulting format and architecture intelligently delivers client-required data from a server, or multiple distributed servers, to a wide range of networked client applications that can build a composite, user-interactive 3D visualization of fused, disparate, geospatial datasets. The proposed innovation provides a highly scalable approach to data storage and management while offering geospatial data services to client science applications and a wide range of client and connection types from broadband-connected desktop computers to wireless cell phones. TerraMetrics offers to research the feasibility of the proposed innovation and demonstrate it within the context of a live, server-supported, Google Earth-compatible client application with high-density, multi-dimensional NASA science data.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
The Barrow Area Information Database (BAID) data collection is comprised of geospatial data for the research hubs of Barrow, Atqasuk and Ivotuk on Alaska's North Slope. Over 9600 research plots and instrument locations are included in the BAID research sites database. Updates to the project tracking database are ongoing through field mapping of new research locations and extant sampling sites dating back to the 1940s. Many ancillary data layers are also compiled to facilitate research activities and science communication. These geospatial data sets have been compiled through BAID and related NSF efforts. Geospatial data unique to this project are currently browseable via the BAID archive and include shapefiles of research information (sampling sites and instrumentation, the NOAA-CMDL clean air sector), administrative units (Barrow Environmental Observatory Science Research District plus adjacent federal lands, village districts, zoning, tax parcels, and the Ukpeagvik Inupiat Corporation boundary), infrastructure (power poles, snow fences, roads), erosion data for Elson Lagoon and imagery (declassified military imagery, air photo mosaics, IKONOS, Landsat, Quickbird, SAR and flight line indexes). Related data sets can be browsed via BAID’s web mapping tools and downloaded via the “Related links” section below. In addition, the BAID Internet Map Server (BAID-IMS) provides browse access to a number of additional layers which are available for download through catalog pages at the National Snow and Ice Data Center (NSIDC), the Alaska Geospatial Data Clearinghouse at USGS and the Alaska State Geo-Spatial Data Clearinghouse. Some layers are proprietary and are only available for browse access in BAID-IMS through special agreement. BAID provides a suite of user interfaces (Internet Map Server, Google Earth and Adobe Flex) and Open Geospatial Consortium web services for accessing the research plots and instrument locations. For more information on...
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Finnish Meteorological Institute Arctic Research Centre Coverage Provider
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019
GeoJunxion uses a combination of methods to make this service very fast and efficient. The map service comes with on-demand tile rendering, often with smart-tiling, and custom styling. With smart tiling, all populated areas are pre-rendered to provide super-fast response to map requests.
KEY FEATURES
• 3 databases: GeoJunxion Maps, OSM Maps, Aerial/Satellite Imagery. • 4 custom map styles: GeoJunxion MapStyle, OSM Generic/Default, OSM Bright, OSM Bright with house numbers • Map tiles are delivered following the Slippy Maps convention.
TYPICAL USE CASES
The OSM Map Tile Server will help to display business locations on a map within a company website, it will also show moving objects on a map within a track & trace application. And furthermore it will also Provide an overview to a company’s assets on a map, as well as include geospatial analysis results within a GIS solution
BENEFITS
OSM Map Tile Server enables you to view online maps within websites or alternatively to view those maps hosted on premise through GIS software
DELIVERY FORMATS API
COVERAGE GeoJunxion, OSM: World Aerial/Satellite Imagery: The Netherlands, Flanders (Belgium)
The GeoJunxion Tile Server is the easiest way to receive map tiles to use within your own organization, application and with your preferred map viewer. The GeoJunxion Tile Server installation is Quick & Easy.
Security: On your own server or in the cloud Smart: Intelligent Map Tiling Quick & Easy: Seamless set-up of map tiles Legal: GeoJuxnion as an European contract party Helpdesk: Support from GeoJunxion with SLA LBS: Additional APIs available
On your own server or in the cloud: With the GeoJunxion Tile Server you can host your own map tiles in your own secure environment. You control your own data and connections. Alternatively, GeoJunxion can host the map tiles in the cloud for you.
OSM for Professional use: GeoJunxion offers enhanced services on top of OpenStreetMap for Professional use. The GeoJunxion Tile Server is part of the OSM for Professionals product portfolio: GeoJunxion will your contract party GeoJunxion can offer support on OSM services based on an agreed SLAControlled QA/QC reports on OpenStreetMap
Slippy Map
The provided map tiles can be used in a modern slippy map web map application which let you zoom and pan around. With a slippy map, basically, the map slips around when you drag the mouse. More info regarding this kind of map, can be found here: https://wiki.openstreetmap.org/wiki/Slippy_Map. Slippy Map - OpenStreetMap Wiki
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Geoserver extension for CKAN bridges the gap between CKAN datasets and GeoServer, a powerful open-source server for sharing geospatial data. This extension simplifies the process of publishing CKAN datasets to GeoServer by providing configuration options and potentially automating the deployment of data as GeoServer layers. Since the provided documentation is minimal, the exact mechanism for data deployment and configuration is assumed to leverage GeoServer's REST API. Key Features: GeoServer Integration: Enables CKAN to interact with a GeoServer instance, simplifying the task of making CKAN datasets available as geospatial layers. Configurable GeoServer Connection: Allows administrators to specify the GeoServer REST API URL, including credentials, for seamless communication and data management. Workspace Management: Facilitates the organization of GeoServer layers within dedicated workspaces, offering control over namespace and data organization. Specifically configures the default and name of a CKAN dedicated workspace. Potential Data Publication Automation (Assumed): While the readme provides no specific details on implementation or data automation, it is assumed the extension provides some level of automated publication functionality within the dedicated workspace. Technical Integration: The extension requires configuration within CKAN's .ini file, specifically defining the GeoServer REST API URL, default workspace name, and workspace URI. The extension depends and requires on write access to the CKAN datastore (using ckan.datastore.write_url). Deployment or configuration changes may necessitate restarting CKAN services to ensure that the changes are completely implemented. Benefits & Impact: By integrating with GeoServer, this extension allows CKAN to serve as a central catalog for geospatial data, enhancing its ability to manage and distribute geographic datasets. It streamlines the data publication process, ensuring that valuable CKAN datasets are readily available as geospatial layers through GeoServer. This is especially useful where geospatial visualization and analysis are key requirements.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. A combination of methods was used to delineate and interpret vegetation polygons for the mapping component of the CEBR project area. RMGSC cartographers acquired or created a number of ancillary spatial datasets: soils, geology, fire data, climate, fauna, invasive species, and CEBR and project boundaries. Digital elevation model (DEM) data were downloaded from the USGS Seamless Data Server (http://seamless.usgs.gov) and processed into a 10-meter ERDAS Imagine file. Slope and aspect information were derived from the DEM coverage. Vegetation information was obtained from Zion National Park from a survey that occurred in 1988 for the CEBR area. Mylar overlays and MOSS data layers were used to create this dataset. After receiving the files, the data were subsequently transferred to current digital orthophotos and output to a shapefile. Two classifications were nested within the original spatial dataset: a habitat type classification with 18 categories (145 polygons) and a community level classification with 29 classes (127 polygons). The polygon delineation was fairly coarse and the shapefile was used only as a reference for the current work. Another vegetation dataset that was acquired from the NPS was a USFS layer. This dataset was clipped to the CEBR area; this subset contained 125 polygons with 16 map classes. The age of these data and any additional metadata is unknown; therefore these general polygons were only used as a guide for the current project.
The list of study sites, meteorological stations and locations of interest that are shown on the Bonanza Creek Long Term Ecological Research site (BNZ LTER) internet map server (IMS, available at http://www.lter.uaf.edu/ims_intro.cfm) is generated from the LTER study sites database. The information is converted into a shapefile and posted to the IMS. Some study sites shown on the main LTER website will not appear on the IMS because they do not have location coordinates. In all cases the most up-to-date information will be found on the (study sites website ).
The spatial information represented on the IMS is available to the public according to the restrictions outlined in the LTER data policy. The dataset represented here consists of the map layers shown on the IMS. The information consists of shapefiles in Environmental Systems Research Institute (ESRI) format. Users of this dataset should be aware that the contents are dynamic. Portions of the information shown on the IMS are derived from the Bonanza Creek LTER databank and are constantly being updated.