100+ datasets found
  1. i

    geospatial vector data used in HiVQ

    • ieee-dataport.org
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zebang Liu (2024). geospatial vector data used in HiVQ [Dataset]. https://ieee-dataport.org/documents/geospatial-vector-data-used-hivq
    Explore at:
    Dataset updated
    Nov 4, 2024
    Authors
    Zebang Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    the dataset includes geospatial vector point and linestring data

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. Vector datasets for workshop "Introduction to Geospatial Raster and Vector...

    • figshare.com
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Avery (2022). Vector datasets for workshop "Introduction to Geospatial Raster and Vector Data with Python" [Dataset]. http://doi.org/10.6084/m9.figshare.21273837.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ryan Avery
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cadaster data from PDOK used to illustrate the use of geopandas and shapely, geospatial python packages for manipulating vector data. The brpgewaspercelen_definitief_2020.gpkg file has been subsetted in order to make the download manageable for workshops. Other datasets are copies of those available from PDOK.

  4. D

    Atolls of France: geospatial vector data (MCRMP project)

    • dataverse.ird.fr
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serge Andréfouët; Serge Andréfouët (2023). Atolls of France: geospatial vector data (MCRMP project) [Dataset]. http://doi.org/10.23708/LHTEVZ
    Explore at:
    application/zipped-shapefile(314981), application/zipped-shapefile(319150), application/zipped-shapefile(16957), application/zipped-shapefile(34377), application/zipped-shapefile(145542), application/zipped-shapefile(12969324), application/zipped-shapefile(1049821), application/zipped-shapefile(2979211), txt(1819)Available download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    DataSuds
    Authors
    Serge Andréfouët; Serge Andréfouët
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZ

    Area covered
    France, New Caledonia, Wallis and Futuna, French Polynesia
    Dataset funded by
    NASA (2001-2007)
    IRD (2003-present)
    Description

    The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 102 atolls of France (in the Pacific and Indian Oceans) as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).

  5. g

    EVGmap 50 VMAP2-Compliant GIS Vector Data

    • shop.geospatial.com
    Updated Feb 7, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). EVGmap 50 VMAP2-Compliant GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/92DCQJ687W1J4RP1F85QANBYR1/EVGmap-50-VMAP2-Compliant-GIS-Vector-Data
    Explore at:
    Dataset updated
    Feb 7, 2015
    Description

    Spatial coverage index compiled by East View Geospatial of set "EVGmap 50 VMAP2-Compliant GIS Vector Data". Source data from EVG (publisher). Type: Topographic. Scale: 1:50,000. Region: World.

  6. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492762
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global geospatial data market is poised for significant expansion, projected to reach $3,788 million and grow at a Compound Annual Growth Rate (CAGR) of 6.1% during the forecast period of 2025-2033. This robust growth is propelled by an increasing demand for location-based intelligence across diverse industries. Key drivers include the proliferation of IoT devices generating vast amounts of location data, advancements in satellite imagery and remote sensing technologies, and the growing adoption of AI and machine learning for analyzing complex geospatial datasets. The enterprise sector is emerging as a dominant application segment, leveraging geospatial data for enhanced decision-making in areas such as logistics, urban planning, real estate, and natural resource management. Furthermore, government agencies are increasingly utilizing this data for public safety, infrastructure development, and environmental monitoring. The market is characterized by a bifurcated segmentation between vector data, representing discrete geographic features, and raster data, depicting continuous phenomena like elevation or temperature. Both segments are experiencing healthy growth, driven by specialized applications and analytical needs. Emerging trends include the rise of real-time geospatial data streams, the increasing importance of high-resolution imagery, and the integration of AI-powered analytics to extract deeper insights. However, challenges such as data privacy concerns, high infrastructure costs for data acquisition and processing, and the need for skilled professionals to interpret and utilize the data effectively may pose some restraints. Despite these hurdles, the overwhelming benefits of actionable location intelligence are expected to drive sustained market expansion, with North America and Europe currently leading in adoption, followed closely by the rapidly growing Asia Pacific region. This in-depth report delves into the dynamic and rapidly evolving Geospatial Data Provider market, offering a comprehensive analysis from the historical period of 2019-2024 through to a robust forecast extending to 2033. With the Base Year and Estimated Year set at 2025, the report provides an up-to-the-minute snapshot and a forward-looking perspective on this critical industry. The market size, valued in the millions, is meticulously dissected across various segments, companies, and industry developments.

  7. H

    Virtual GDAL/OGR Geospatial Data Format

    • hydroshare.org
    • search.dataone.org
    zip
    Updated May 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Cera (2018). Virtual GDAL/OGR Geospatial Data Format [Dataset]. https://www.hydroshare.org/resource/228394bfdc084cb9a21d6c168ed4264e
    Explore at:
    zip(2.3 MB)Available download formats
    Dataset updated
    May 8, 2018
    Dataset provided by
    HydroShare
    Authors
    Tim Cera
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The GDAL/OGR libraries are open-source, geo-spatial libraries that work with a wide range of raster and vector data sources. One of many impressive features of the GDAL/OGR libraries is the ViRTual (VRT) format. It is an XML format description of how to transform raster or vector data sources on the fly into a new dataset. The transformations include: mosaicking, re-projection, look-up table (raster), change data type (raster), and SQL SELECT command (vector). VRTs can be used by GDAL/OGR functions and utilities as if they were an original source, even allowing for chaining of functionality, for example: have a VRT mosaic hundreds of VRTs that use look-up tables to transform original GeoTiff files. We used the VRT format for the presentation of hydrologic model results, allowing for thousands of small VRT files representing all components of the monthly water balance to be transformations of a single land cover GeoTiff file.

    Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/

  8. d

    Vector geospatial data- Evaluation of Nearshore Communities and Habitats in...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Vector geospatial data- Evaluation of Nearshore Communities and Habitats in lower Cook Inlet, Alaska, 2015-2018 [Dataset]. https://catalog.data.gov/dataset/vector-geospatial-data-evaluation-of-nearshore-communities-and-habitats-in-lower-cook-2015
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Service
    Area covered
    Cook Inlet
    Description

    Shapefiles pertaining to project Evaluation of Nearshore Communities and Habitats in lower Cook Inlet, Alaska, 2015-2018. Depicts the project bounding box, site locations, survey quadrat locations within site, and survey transect locations within site.

  9. g

    Iran 1:100,000 Scale Geological GIS Vector Data

    • shop.geospatial.com
    Updated Nov 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Iran 1:100,000 Scale Geological GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/WHJAPG52TB2ZMDJ6C762EVYGG7/Iran-1-to-100000-Scale-Geological-GIS-Vector-Data
    Explore at:
    Dataset updated
    Nov 23, 2020
    Area covered
    Iran
    Description

    Spatial coverage index compiled by East View Geospatial of set "Iran 1:100,000 Scale Geological GIS Vector Data". Source data from GSI (publisher). Type: Geoscientific - Geology. Scale: 1:100,000. Region: Middle East.

  10. D

    Benchmark data for: Machine Learning for geospatial vector data...

    • dataverse.nl
    bin, csv, ods
    Updated Dec 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veer, van 't, Rein; Veer, van 't, Rein (2018). Benchmark data for: Machine Learning for geospatial vector data classification [Dataset]. http://doi.org/10.34894/AWULXE
    Explore at:
    csv(159915985), bin(44352763), bin(161827968), csv(164500832), csv(4537485), bin(13103737), bin(18167905), csv(9023800), csv(12051020), csv(17260792), csv(8520137), csv(10781935), csv(8419430), bin(411241794), csv(18236704), csv(16008399), bin(120133455), ods(24876)Available download formats
    Dataset updated
    Dec 4, 2018
    Dataset provided by
    DataverseNL
    Authors
    Veer, van 't, Rein; Veer, van 't, Rein
    License

    https://dataverse.nl/api/datasets/:persistentId/versions/9.0/customlicense?persistentId=doi:10.34894/AWULXEhttps://dataverse.nl/api/datasets/:persistentId/versions/9.0/customlicense?persistentId=doi:10.34894/AWULXE

    Description

    Benchmark data for paper "Deep Learning for Classification Tasks on Geospatial Vector Polygons". Core of the data is in the six numpy zip files. Each numpy zip contains the original WKT geometries as zlib compressed blobs, variable and fixed length geometry vectors, fourier descriptors, and a class dictionary. The zlib compressed wkt strings can be decompressed with import numpy as np import zlib loaded = np.load('archaeology_train_v8.npz') wkts_zipped = loaded['wkts_zlib_compressed'] for wkt_zipped in wkts_zipped: wkt = str.decode(zlib.decompress(wkt_zipped))

  11. Data for workshop: "Introduction to Geospatial Raster and Vector Data with...

    • figshare.com
    zip
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Nattino (2023). Data for workshop: "Introduction to Geospatial Raster and Vector Data with Python" - Wildfires in Rhodes [Dataset]. http://doi.org/10.6084/m9.figshare.24270796.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 9, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Francesco Nattino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Support dataset for the workshop: "Introduction to Geospatial Raster and Vector Data with Python", from the Carpentries Incubator. The focus will be the wildfires that affected Rhodes in July 2023.

  12. d

    Data from: Raster and vector geospatial data of interpolated groundwater...

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Raster and vector geospatial data of interpolated groundwater level altitude associated with a groundwater-level map of Fauquier County, Virginia, October - November 2018 [Dataset]. https://catalog.data.gov/dataset/raster-and-vector-geospatial-data-of-interpolated-groundwater-level-altitude-associated-wi
    Explore at:
    Dataset updated
    Oct 28, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Fauquier County, Virginia
    Description

    This dataset is the product of a geospatial interpolation using groundwater-level data obtained from a U.S. Geological Survey (USGS) synoptic survey of 129 groundwater wells in Fauquier County, VA from October 29 through November 2, 2018 and selected points from the National Hydrography Dataset (NHD). Methodology is detailed in USGS SIR 2022-5014 "Groundwater-level contour map of Fauquier County, VA, October - November 2018." Files include a continuous raster surface of groundwater-level altitudes at a horizontal resolution of 30 meters and vector lines of discrete groundwater-level altitude contours.

  13. Geospatial data for the Vegetation Mapping Inventory Project of Pictured...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pictured Rocks
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  14. g

    EVGmap 250 VMAP1-Compliant GIS Vector Data

    • shop.geospatial.com
    Updated May 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). EVGmap 250 VMAP1-Compliant GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/VCFP6Y5F885ZM02CWV5EGEK623/EVGmap-250-VMAP1-Compliant-GIS-Vector-Data
    Explore at:
    Dataset updated
    May 9, 2019
    Description

    Spatial coverage index compiled by East View Geospatial of set "EVGmap 250 VMAP1-Compliant GIS Vector Data". Source data from EVG (publisher). Type: Topographic. Scale: 1:250,000. Region: World.

  15. D

    Atolls of Indian Ocean and Red Sea: geospatial vector data (MCRMP project)

    • dataverse.ird.fr
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serge Andréfouët; Serge Andréfouët (2023). Atolls of Indian Ocean and Red Sea: geospatial vector data (MCRMP project) [Dataset]. http://doi.org/10.23708/OCEC0S
    Explore at:
    application/zipped-shapefile(458162), application/zipped-shapefile(1744916), application/zipped-shapefile(3012031), application/zipped-shapefile(12759), application/zipped-shapefile(10064692), txt(1834)Available download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    DataSuds
    Authors
    Serge Andréfouët; Serge Andréfouët
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/OCEC0Shttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/OCEC0S

    Area covered
    Indian Ocean, Red Sea, Seychelles, Sudan, Maldives
    Dataset funded by
    IRD (2003-present)
    NASA (2001-2007)
    Description

    The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 52 atolls of the Indian Ocean and Red Sea as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per country or region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).

  16. MatchingLand - initial datasets

    • springernature.figshare.com
    • search.datacite.org
    zip
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emerson M. A. Xavier; Francisco J. Ariza-López; Manuel A. Ureña-Cámara (2023). MatchingLand - initial datasets [Dataset]. http://doi.org/10.6084/m9.figshare.4658767.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Emerson M. A. Xavier; Francisco J. Ariza-López; Manuel A. Ureña-Cámara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file is part of the MatchingLand testbed and contains the datasets of initial group (point, line, and area) and the list of matching pairs in plain text. The initial group of datasets encompasses the data selected from original sources of Spanish mapping agencies at scales 1:25,000 and 1:10,000. The datasets are in Shapefile format and coordinate reference system EPSG:32628.

  17. Geospatial Data Pack for Visualization

    • kaggle.com
    zip
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vega Datasets (2025). Geospatial Data Pack for Visualization [Dataset]. https://www.kaggle.com/datasets/vega-datasets/geospatial-data-pack
    Explore at:
    zip(1422109 bytes)Available download formats
    Dataset updated
    Oct 21, 2025
    Dataset authored and provided by
    Vega Datasets
    Description

    Geospatial Data Pack for Visualization 🗺️

    Learn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets

    Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.

    Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.

    Why Use This Dataset? 🤔

    • Comprehensive Geospatial Types: Explore a variety of core geospatial data models:
      • Vector Data: Includes points (like airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).
      • Raster-like Data: Work with gridded datasets (like windvectors.csv, annual-precip.json).
    • Diverse Formats: Gain experience with standard and efficient geospatial formats like GeoJSON (see Table 1, 2, 4), compressed TopoJSON (see Table 1), and plain CSV/TSV (see Table 2, 3, 4) for point data and attribute tables ready for joining.
    • Multi-Scale Coverage: Practice visualization across different geographic scales, from global and national (Table 1, 4) down to the city level (Table 1).
    • Rich Thematic Mapping: Includes multiple datasets (Table 3) specifically designed for joining attributes to geographic boundaries (like states or counties from Table 1) to create insightful choropleth maps.
    • Ready-to-Use & Example-Driven: Cleaned datasets tightly integrated with 31+ official examples (see Appendix) from Altair, Vega-Lite, and Vega, allowing you to immediately practice techniques like projections, point maps, network maps, and interactive displays.
    • Python Friendly: Works seamlessly with essential Python libraries like Altair (which can directly read TopoJSON/GeoJSON), Pandas, and GeoPandas, fitting perfectly into the Kaggle notebook environment.

    Table of Contents

    Dataset Inventory 🗂️

    This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.

    1. BASE MAP BOUNDARIES (Topological Data)

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Map (1:10m)us-10m.json627 KBTopoJSONCC-BY-4.0US state and county boundaries. Contains states and counties objects. Ideal for choropleths.id (FIPS code) property on geometries
    World Map (1:110m)world-110m.json117 KBTopoJSONCC-BY-4.0World country boundaries. Contains countries object. Suitable for world-scale viz.id property on geometries
    London BoroughslondonBoroughs.json14 KBTopoJSONCC-BY-4.0London borough boundaries.properties.BOROUGHN (name)
    London CentroidslondonCentroids.json2 KBGeoJSONCC-BY-4.0Center points for London boroughs.properties.id, properties.name
    London Tube LineslondonTubeLines.json78 KBGeoJSONCC-BY-4.0London Underground network lines.properties.name, properties.color

    2. GEOGRAPHIC REFERENCE POINTS (Point Data) 📍

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Airportsairports.csv205 KBCSVPublic DomainUS airports with codes and coordinates.iata, state, `l...
  18. Geospatial data for the Vegetation Mapping Inventory Project of Indiana...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Indiana Dunes National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-indiana-dunes-national-lak
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  19. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492758
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Data Provider market is booming, projected to reach $6.225 billion by 2033 with a 6.1% CAGR. Discover key trends, regional analysis, leading companies (Esri, SafeGraph, PlanetObserver), and future growth opportunities in this comprehensive market report.

  20. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zebang Liu (2024). geospatial vector data used in HiVQ [Dataset]. https://ieee-dataport.org/documents/geospatial-vector-data-used-hivq

geospatial vector data used in HiVQ

Explore at:
Dataset updated
Nov 4, 2024
Authors
Zebang Liu
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

the dataset includes geospatial vector point and linestring data

Search
Clear search
Close search
Google apps
Main menu