http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
Shallow Geothermal Energy Potential Map consists of a spatial and borehole data base. The Serial Shallow Geothermal Energy Potential Map at a scale of 1:50,000 will be the beginning of the estimation of shallow geothermal resources in terms of the application of optimal technologies and estimation of Poland's energy resources. In the pilot project, carried out between 2017 and 2022, maps were made in the grid of the Detailed Geological Map of Poland at a scale of 1:50 000 and in the grid of the topographic map at a scale of 1:10 000 for areas of urban agglomerations. The analysis covered areas: • in the scale of 1:10 000: o Warsaw (90 sheets), o Wrocław (48 sheets); • in the scale of 1:50 000: o Jelenia Góra region (1 sheet), o Bielsko-Biała region (3 sheets) o Rabka-Zdrój region (2 sheets) o Krynica-Zdrój region (3 sheets). Currently, the project is carried out at a scale of 1:50 000 and covers the following areas: • Gdańsk region (6 sheets), • Supraśl region (2 sheets), • Mielnik region (2 sheets), • Kazimierz Dolny region (4 sheets), • Jelenia Góra region (Sudety Mountains) (5 sheets). The following maps were made on the basis of the study entitled ‘Instruction for making shallow geothermal energy potential and environmental conditions Maps' : • thermal conductivity maps λ [W/m*K] at depths of 40, 70, 100 and 130 m below ground level; • unit heat output maps qv [W/m] for 1800 h of heat pump operation per year at depths of 40, 70, 100 and 130 m below ground level; • unit heat output maps qv [W/m] for 2100 h of heat pump operation per year at a depth of 40, 70, 100 and 130 m below ground level; • Borehole heat exchangers feasibility map according to environmental conditions. To supplement the shallowe geothermal potential maps, were created maps showing the locations of potential geoenvironmental conflicts, where the drilling of boreholes for ground source heat exchangers (GHE), and thus the installation of ground source heat pumps (GHP), is generally possible, where additional information is required or it is generally not possible. Such maps are helpful for the efficient design of individual GHP installations as well as for the determination, of the extent to which low-temperature geothermal energy can meet the heat demand of a region or urban agglomeration for example by local authorities. The maps are complemented by a nationwide GIS database for shallowe geothermal, which will include geological documentations for the purposes of obtaining geothermal heat, collected in the resources of the Central Geological Archives of Polish Geological Institute. In addition, the effective thermal conductivity leff [W/m*K] in the 0÷100m depth interval was determined for selected boreholes from the Central Hydrogeological Databank (deeper than 100 m). On the base of it point map of shallowe geothermal potential for the area of whole Poland was created. The parameterisation was carried out using the thermal conductivity conversion tables from the PORT PC Guidelines, 2013. In the pilot project, 14 011 boreholes were calculated from the Central Hydrogeological Databank. In the current project, the parameterisation will be carried out on the basis of thermal conductivity measurements (both in the fild and in the laboratory) the thermal conductivity conversion tables from the PORT PC Guidelines, 2021.
Web map of geothermal sites of Alaska. Geothermal Springs: Includes temperature and flow information. Spring location uncertainty and data sources are also included. Geothermal Wells: Location and name onlyVolcanoes: Direct from Volcanoes ServiceThe Geothermal Springs and Wells is derived in part from the Alaska Division of Geologic and Geophysical Survey's previous submissions to the AASG Geothermal Data Repository sponsored by the U.S. Department of Energy under award DE-EE0002850 to the Arizona Geological Survey acting on behalf of the Association of American State Geologists.Part of project: Geothermal Database
The underground geothermal conditions can be presented, irrespective of the aquifers' position, with the appropriate geothermal maps. These maps represent the expected isoterms at a depths and are derived from Geothermal maps - Expected temperatures , which are made with data from 302 boreholes. It is made on the basis of measured temperatures in accessible boreholes throughout the country. However, since the temperature field depends on the geological structure in the depths and tectonic characteristics, the course of the isotherms is a result of many influences, such as thermal conductivity of rocks, permeability and fracturing of rocks, all of which are reflected in the measured temperatures in boreholes. The distribution of boreholes, which were useful for the measurement of temperature, is very uneven and different as regard the depths.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data layer contains geothermal resource areas and their technical potential used in long-term electric system modeling for Integrated Resource Planning and SB 100. Geothermal resource areas are delineated by Known Geothermal Resource Areas (KGRAs) (Geothermal Map of California, 2002), other geothermal fields (CalGEM Field Admin Boundaries, 2020), and Bureau of Land Management (BLM) Geothermal Leasing Areas (California BLM State Office GIS Department, 2010). The fields that are considered in our assessment have enough information known about the geothermal reservoir that an electric generation potential was estimated by USGS (Williams et al. 2008) or estimated by a BLM Environmental Impact Statement (El Centro Field Office, 2007). For the USGS identified geothermal systems, any point that lies within 2 km of a field is summed to represent the total mean electrical generation potential from the entire field.
Geothermal field boundaries are constructed for identified geothermal systems that lie outside of an established geothermal field. A circular footprint is assumed with a radius determined by the area needed to support the mean resource potential estimate, assuming a 10 MW/km2 power density.
Several geothermal fields have power plants that are currently generating electricity from the geothermal source. The total production for each geothermal field is estimated by the CA Energy Commission’s Quarterly Fuel and Energy Report that tracks all power plants greater than 1 MW. The nameplate capacity of all generators in operation as of 2021 were used to inform how much of the geothermal fields are currently in use. This source yields inconsistent results for the power plants in the Geysers. Instead, an estimate from the net energy generation from those power plants is used. Using these estimates, the net undeveloped geothermal resource potential can be calculated.
Finally, we apply the protected area layer for geothermal to screen out those geothermal fields that lie entirely within a protected area. The protected area layer is compiled from public and private lands that have special designations prohibiting or not aligning with energy development.
This layer is featured in the CEC 2023 Land-Use Screens for Electric System Planning data viewer.
For more information about this layer and its use in electric system planning, please refer to the Land Use Screens Staff Report in the CEC Energy Planning Library.
Change Log:
Version 1.1 (January 18, 2024)
Data Dictionary:
Total_MWe_Mean: The estimated resource potential from each geothermal field. All geothermal fields, except for Truckhaven, was given an estimate by Williams et al. 2008. If more than one point resource intersects (within 2km of) the field, the sum of the individual geothermal systems was used to estimate the magnitude of the resource coming from the entire geothermal field. Estimates are given in MW.
Total_QFER_NameplateCapacity: The total nameplate capacities of all generators in operation as of 2021 that intersects (within 2 km of) a geothermal field. The resource potential already in use for the Geysers is determined by Lovekin et al. 2004. Estimates are given in MW.
ProtectedArea_Exclusion: Binary value representing whether a field is excluded by the land-use screen or not. Fields that are excluded have a value of 1; those that aren’t have a value of 0.
NetUndevelopedRP: The net undeveloped resource potential for each geothermal field. This field is determined by subtracting the total resource potential in use (Total_QFER_NameplateCapacity) from the total estimated resource potential (Total_MWe_Mean). Estimates are given in MW.
Acres_GeothermalField: This is the geodesic acreage of each geothermal field. Values are reported in International Acres using a NAD 1983 California (Teale) Albers (Meters) projection.
References:
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
The map application shows the Czech Republic‘s geothermal potential and its limitations. Map layers indicating the temperature distribution (°C) at various depths ranging from 400 m to 5000 m, a map of heat flux distribution (mW.m-2) at the surface, and a map of the thermal conductivity of rocks (W. m-1. K-1) illustrate the geothermal potential. The application also includes thematic layers depicting limitations and conflicts of interest, which are constraints on the use of geothermal energy due to natural hazards (e.g. floodplains, areas with unstable bedrock and prone to landslides), technical constraints on the construction of geothermal installations (existing infrastructure, mining, etc.), and legislative restrictions (protection of nature and water, etc.).
The underground geothermal conditions can be presented, irrespective of the aquifers' position, with the appropriate geothermal maps. This map shows the expected depths of the isotherm of 150 °C and is made with data from 191 boreholes. In a way, it is the inverse of those ordinary temperature maps showing the temperature at certain depths. It is made on the basis of measured temperatures in accessible boreholes throughout the country. However, since the temperature field depends on the geological structure in the depths and tectonic characteristics, the course of contours results of many influences, such as thermal conductivity of rocks, permeability and fracturing of rocks, all of which are reflected in the measured temperatures in boreholes. However, the permeability and fracturing of rocks decrease with greater depths, which are for this map in the west and south and in parts of northern Slovenia quite great to this isotherm. The distribution of boreholes, which were useful for the measurement of temperature, is very uneven, and different as regard the depths. The map of depths to 150 °C isotherm shows a positive anomaly in the northeastern part of Slovenia. As a result of thin Earth's crust in the area and the higher conductive heat flow from the Earth's mantle, there are higher temperatures and thus are inversely smaller depths to the isotherm of 150 °C.
Map represents the calculated (surface) heat-flow density (HFD) in mW/m2 with topographic correction. It is made with data from 119 boreholes from the measured temperatures in the available boreholes and measured thermal conductivity on cored rock samples from the same boreholes. The pattern of the HFD isolines is affected by numerous parameters, particularly the thermal conductivity of rocks, rock permeability and fracturing, fluid content of the rocks, and all are reflected in the measured temperature gradient in the boreholes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This online map represents geothermal wells regulated by the Geologic Energy Management Division.
Map of the known geothermal resource areas from the California Department of Conservation, CalGEM 2002.
This collection of geothermal resources contains low-temperature geothermal groundwater wells (greater than 85 degrees and less than 212 degrees Fahrenheit) and true geothermal wells (212 degrees Fahrenheit or greater).
This is a metadata compilation for maps published by Massachusetts Geological Survey as Miscellaneous Map Series M-13-01 through M-13-08 for the Massachusetts Geothermal Energy Project in 2013. The maps inlcude thermal conductivity of bedrock and soil, heat production, inferred heat flow, and temperatures at 3-, 4-, 5-, and 6-Km depths.The metadata compilation is published as an Excel workbook containing header features including title, description, author, citation, originator, distributor, and resource URL links to scanned maps (PDFs) for download. The Excel workbook contains contains six worksheets, including information about the template, notes related to revisions of the template, resource provider information, the data, a field list (data mapping view), and vocabularies (data valid terms) used to populate the data worksheet . The metadata was provided by the Massachusetts Geological Survey and made available for distribution through the National Geothermal Data System.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a surface showing relative favorability for the presence of geothermal systems in the western United States. It is an average of 12 models that correlates different geological and geophysical factors to the known presence of moderate (90 - 150° C) to high (> 150° C) temperature geothermal systems. as discussed in the reference in the 'Larger Work' section of this metadata file. The data is represented as a polygon contour file as well as a raster.
The results of a new EGS geothermal resource assessment of the eastern US, focused on the Northeastern US and based on use of Bottom Hole Temperatures (BHT), are summarized. A total of 5,800 heat flow points are now available for the area as opposed to the 323 used to produce the 2004 Geothermal Map of North America. The challenge is determining heat flow and subsurface temperature in areas where no data or limited conventional heat flow data exist in the previous assessments (most of the eastern 2/3 of the US). The techniques used to allow large scale use of BHT data for heat flow calculations are described. The process for the temperature-at-depth calculation is updated to better accommodate the use of BHT data. The geophysical data are also utilized as an ancillary predictor to the heat flow determination process in areas with limited or no thermal data. This study uses the same process to calculate heat storage when the thermal properties and temperature at depth are known described in the Future of Geothermal Energy report. Heat-in-place values have been updated for the northeastern US. Because of the higher data density the new temperature at depth maps show more localized temperature anomalies then the older maps and are a first step in the identification of site specific geothermal anomalies for further research and development. An important result is the identification and delineation of a significant thermal anomaly in eastern West Virginia.
Map 40 Geothermal Gradient Data, Cedar City, Utah, 1x2 Degree AMS Sheet was produced by the Utah Geological and Mineral Survey, Department of Natural Resources. The Geothermal gradient map for Utah is the first in a series of geothermal maps attempting to provide regional geothermal gradients. It was prepared utilizing all available data with the largest single source from water wells. This map was provided by the Utah Geological and Mineral Survey and made available for distribution through the AASG National Geothermal Data Systems project
The Geothermal Resources Map of North Dakota map was prepared and printed in 1981 by the National Geophysical and Solar Terrestrial Data Center, NOAA, for the DOE Division of Geothermal Energy. Geothermal data for the North Dakota map were compiled by Kenneth L. Harris, Francis L. Howell, Brad L. Wartman, and Sidney B. Anderson, Engineering Experiment Station, University of North Dakota at Grand Forks. Map scale is 1500,000 and was based on the geodetic reference system North American Datum of 1927 (NAD27) and has been georeferenced to WGS84. Data on the map include: 1. Locations of heat flow measurements and observed heat flow. 2. shaded regions indicating areas where the surface geothermal gradient is greater than 30 C/km and greater than 40 C/km. 3. Inset maps showing: A. Contoured depth to the Madison Group, B. Thickness of the Madison Group, C. Water Quality of the Madison Group, D. Temperature contours of the Madison Group, E. an EW cross section of the sedimentary rocks in the state. The Geothermal Resources Map can be opened in ArcMap or as a .tiff file. Paper copies are available at contact listed below. This resource was provided by the University of North Dakota and made available for distribution through the National Geothermal Data System.
Corresponds to the content of the overview map published by the Geological Service M-V 2000 1:500 000 “Geothermal energy”, including the 5 sub-cards.
Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Decision support map for the use of shallow geothermal energy
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ground source heat energy, sometimes called shallow geothermal energy, can be collected from the ground and boosted with heat pumps. This can yield up to four times as much energy as is used to collect it, giving ‘four for the price of one’ in energy terms. Heat energy can be harnessed, or ‘collected’, using different types of collector systems:Closed loop collectors are systems where heat is extracted from the ground (or cooling is gained) by pumping a heat exchange fluid through closed pipes within the ground. The pipes can be installed borehole(s) (vertical closed loop) or laid out horizontally (horizontal closed loop).Open loop ground source heat systems operate by taking heat energy from abstracted groundwater using a heat pump. The volume of groundwater that can be abstracted from a borehole or taken from a spring each day (the ‘yield’) determines the total amount of heat energy available, and therefore the size of heat pump that can be used and the size of building that can be heated.The ground source heating/cooling suitability maps indicate which type of ground source heat collector is most compatible with the geology below your site. All maps should be assessed together, since whilst some areas may be unsuitable for one type of ground source heat collector system (‘ground source heat pumps’ or GSHPs), the heat energy can be successfully harnessed by a different type of system. The maps show that there is a shallow geothermal solution for heating or cooling for every location in Ireland.The suitability maps use a suitability rating ranging from 1 (worst) to 5 (best) for each type of heat collector/cooling system. Suitability maps for open loop (domestic/small commercial), open loop (larger commercial/industrial processes) and vertical closed loop systems are available.The Geothermal Open Loop Domestic suitability map and Geothermal Open Loop Commercial suitability map are to the scale 1:100,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 1km.The Geothermal Vertical Closed Loop suitability map is to the scale 1:40,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 400m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on: Suitability Class and Suitability Description.
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
The WMS viewing service of the Shallow Geothermal Energy Potential Maps database contains the following information layers collected and produced within the framework of the Shallow Geothermal Energy Pottential Maps project: • 13 area-specific GIS information layers: o thermal conductivity maps λ [W/m*K] at depths of 40, 70, 100 and 130 m below ground level; o unit heat output maps qv [W/m] for 1800 h of heat pump operation per year at depths of 40, 70, 100 and 130 m below ground level; o unit heat output maps qv [W/m] for 2100 h of heat pump operation per year at a depth of 40, 70, 100 and 130 m below ground level; o Borehole heat exchangers feasibility map according to environmental conditions. • layers made on the basis of the data contained in the documentation in the Central Geological Archives of Polish Geological Institute: o Location of boreholes for ground source heat exchangers (GHE), o representative profile of the borehole for ground source heat exchanger (GHE) with borehole documentation card, o objects with ground source heat pumps (GHP) installed, o the area of location of an object with a shallowe geothermal installation; • a layer created by analyzing boreholes from the Central Hydrogeological Databank in accordance with the 2013 PORT PC guidelines: thermal conductivity λ [W/m*K] to a depth of 100 m below ground level; • polygon layer with mapped areas; • polygon layer with a map grid with completed maps at a scale of 1:10 000; • polygon layer with a map grid with completed maps (or under development) at a scale of 1:50 000.
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
Shallow Geothermal Energy Potential Map consists of a spatial and borehole data base. The Serial Shallow Geothermal Energy Potential Map at a scale of 1:50,000 will be the beginning of the estimation of shallow geothermal resources in terms of the application of optimal technologies and estimation of Poland's energy resources. In the pilot project, carried out between 2017 and 2022, maps were made in the grid of the Detailed Geological Map of Poland at a scale of 1:50 000 and in the grid of the topographic map at a scale of 1:10 000 for areas of urban agglomerations. The analysis covered areas: • in the scale of 1:10 000: o Warsaw (90 sheets), o Wrocław (48 sheets); • in the scale of 1:50 000: o Jelenia Góra region (1 sheet), o Bielsko-Biała region (3 sheets) o Rabka-Zdrój region (2 sheets) o Krynica-Zdrój region (3 sheets). Currently, the project is carried out at a scale of 1:50 000 and covers the following areas: • Gdańsk region (6 sheets), • Supraśl region (2 sheets), • Mielnik region (2 sheets), • Kazimierz Dolny region (4 sheets), • Jelenia Góra region (Sudety Mountains) (5 sheets). The following maps were made on the basis of the study entitled ‘Instruction for making shallow geothermal energy potential and environmental conditions Maps' : • thermal conductivity maps λ [W/m*K] at depths of 40, 70, 100 and 130 m below ground level; • unit heat output maps qv [W/m] for 1800 h of heat pump operation per year at depths of 40, 70, 100 and 130 m below ground level; • unit heat output maps qv [W/m] for 2100 h of heat pump operation per year at a depth of 40, 70, 100 and 130 m below ground level; • Borehole heat exchangers feasibility map according to environmental conditions. To supplement the shallowe geothermal potential maps, were created maps showing the locations of potential geoenvironmental conflicts, where the drilling of boreholes for ground source heat exchangers (GHE), and thus the installation of ground source heat pumps (GHP), is generally possible, where additional information is required or it is generally not possible. Such maps are helpful for the efficient design of individual GHP installations as well as for the determination, of the extent to which low-temperature geothermal energy can meet the heat demand of a region or urban agglomeration for example by local authorities. The maps are complemented by a nationwide GIS database for shallowe geothermal, which will include geological documentations for the purposes of obtaining geothermal heat, collected in the resources of the Central Geological Archives of Polish Geological Institute. In addition, the effective thermal conductivity leff [W/m*K] in the 0÷100m depth interval was determined for selected boreholes from the Central Hydrogeological Databank (deeper than 100 m). On the base of it point map of shallowe geothermal potential for the area of whole Poland was created. The parameterisation was carried out using the thermal conductivity conversion tables from the PORT PC Guidelines, 2013. In the pilot project, 14 011 boreholes were calculated from the Central Hydrogeological Databank. In the current project, the parameterisation will be carried out on the basis of thermal conductivity measurements (both in the fild and in the laboratory) the thermal conductivity conversion tables from the PORT PC Guidelines, 2021.