10 datasets found
  1. G

    Germany DE: Time to Prepare and Pay Taxes

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Germany DE: Time to Prepare and Pay Taxes [Dataset]. https://www.ceicdata.com/en/germany/company-statistics/de-time-to-prepare-and-pay-taxes
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Germany
    Variables measured
    Enterprises Statistics
    Description

    Germany DE: Time to Prepare and Pay Taxes data was reported at 218.000 Hour in 2019. This stayed constant from the previous number of 218.000 Hour for 2018. Germany DE: Time to Prepare and Pay Taxes data is updated yearly, averaging 218.000 Hour from Dec 2005 (Median) to 2019, with 15 observations. The data reached an all-time high of 221.000 Hour in 2011 and a record low of 196.000 Hour in 2009. Germany DE: Time to Prepare and Pay Taxes data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Company Statistics. Time to prepare and pay taxes is the time, in hours per year, it takes to prepare, file, and pay (or withhold) three major types of taxes: the corporate income tax, the value added or sales tax, and labor taxes, including payroll taxes and social security contributions.;World Bank, Doing Business project (http://www.doingbusiness.org/). NOTE: Doing Business has been discontinued as of 9/16/2021. For more information: https://bit.ly/3CLCbme;Unweighted average;Data are presented for the survey year instead of publication year.

  2. g

    German Internet Panel, Welle 39 (Januar 2019)

    • search.gesis.org
    • da-ra.de
    Updated Aug 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blom, Annelies G.; Fikel, Marina; Friedel, Sabine; Höhne, Jan Karem; Krieger, Ulrich; Rettig, Tobias; Wenz, Alexander; SFB 884 ´Political Economy of Reforms´, Universität Mannheim (2020). German Internet Panel, Welle 39 (Januar 2019) [Dataset]. http://doi.org/10.4232/1.13585
    Explore at:
    (63213), (57803)Available download formats
    Dataset updated
    Aug 25, 2020
    Dataset provided by
    GESIS search
    GESIS Data Archive
    Authors
    Blom, Annelies G.; Fikel, Marina; Friedel, Sabine; Höhne, Jan Karem; Krieger, Ulrich; Rettig, Tobias; Wenz, Alexander; SFB 884 ´Political Economy of Reforms´, Universität Mannheim
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Time period covered
    Jan 1, 2019 - Jan 31, 2019
    Area covered
    Germany
    Description

    The German Internet Panel (GIP) is an infrastructure project. The GIP serves to collect data about individual attitudes and preferences which are relevant for political and economic decision-making processes.

    The questionnaire contains numerous experimental variations in the survey instruments. For further information, please refer to the study documentation.

    Topics: Welfare state: government’s responsibility for health care; government and statutory health insurance funds should spend more vs. less money on the health system; self-assessment of health; kind of health insurance; government’s responsibility for an adequate standard of living in old age; government and statutory pension insurance should spend more vs. less money on pensions; preferred statutory retirement age; sources for pension payments received in 2018 (state pension, early retirement pension, occupational pension, private pension, disability pension, dependent’s pension, war pension, long term care benefits, no benefits received); contributions made in 2018 to various types of retirement provision (state pension, occupational pension, private pension, disability insurance, life insurance, other, no pension contribution);

    Experiment on the financing of old age provision based on the individual pillars of old age provision in Germany (state benefits for basic provision in old age, pensions for civil servants from the state budget, statutory pension insurance, employers and employees through company pensions, each individual through private old age provision). In the question, respondents are asked to choose between two alternatives. The first alternative always remained the same, only its designation (as Status Quo or Proposal 1) was varied. In addition, each respondent is randomly assigned combinations of values for proposal 2.

    Conjoint experiment on the regulation of pensions in Germany: Preference for reform proposals 1 or 2 with different values for the attributes retirement age, pension level, retirement without deductions, contribution rate and pension bonus for parental leave.

    Government’s responsibility for the unemployed; government should spend more vs. less money on unemployment; consequences of minim wage on unemployment and poverty in Germany; preferred level of the statutory minimum wage; government’s responsibility for an adequate standard of living for families with children; government should spend more vs. less money on families; priority of cash benefits and tax breaks vs. expansion of childcare in future family policy; government’s responsibility for childcare; government’s responsibility for equal opportunities between men and women at work; opinion on the expansion of the statutory quota of women for corporate management bodies; gender-specific values; opinion on the purchase of CDs with stolen tax information by the federal states; purchase of such tax CDs by the own federal state; donation for charitable organisations; donation claimed in tax declaration; attitude towards tax evasion; evaluation of more influence of taxpayers in the use of their tax payments by the state.

    Experiment on the social status of citizens (varies for the reference category rich vs. poor): Assessment of statements on rich and poor in Germany with regard to worries, varied life, happiness, success, influence on political decisions, education and educational opportunities, financial security, elite membership and use of transport; self-assessment of social status on a 10 rung ladder.

    Wheel of Fortune experiment on the respondent´s attention: randomly chosen letter between A and K on a wheel of fortune graphic; calculation of the possible payout to the participants.

    Satisfaction with democracy; expected own economic situation in one year; European Union: importance of the EU for the respondent (e.g. economic prosperity); probability of further countries leaving the EU; voting behaviour in a referendum on Germany´s membership in the EU (Sunday question).

    Demography: sex; age (year of birth, categorized); highest educational degree; highest professional qualification; marital status; household size; employment status; assessment of unemployment risk; personal income; German citizenship; frequency of private Internet usage; federal state.

    Additionally coded: Respondent ID; household ID, GIP; person ID (within the household); year of recruitment (2012, 2014, 2018); interview date; current online status; assignment to experimental groups; activati...

  3. d

    German Internet Panel, Wave 35 (May 2018)

    • da-ra.de
    • datacatalogue.cessda.eu
    Updated Nov 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annelies G. Blom; Marina Fikel; Sabine Friedel; Jan Karem Höhne; Ulrich Krieger; Tobias Rettig; Alexander Wenz (2019). German Internet Panel, Wave 35 (May 2018) [Dataset]. http://doi.org/10.4232/1.13388
    Explore at:
    Dataset updated
    Nov 20, 2019
    Dataset provided by
    GESIS Data Archive
    da|ra
    Authors
    Annelies G. Blom; Marina Fikel; Sabine Friedel; Jan Karem Höhne; Ulrich Krieger; Tobias Rettig; Alexander Wenz
    Time period covered
    May 1, 2018 - Jun 5, 2018
    Area covered
    Germany
    Description

    Persons between 16 and 75 years of age living in private households at the time of recruitment

  4. G

    Germany CPI: 2010=100: MS: Social Protection

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Germany CPI: 2010=100: MS: Social Protection [Dataset]. https://www.ceicdata.com/en/germany/consumer-price-index-by-coicop-2010100/cpi-2010100-ms-social-protection
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2018 - Dec 1, 2018
    Area covered
    Germany
    Variables measured
    Consumer Prices
    Description

    Germany Consumer Price Index (CPI): 2010=100: MS: Social Protection data was reported at 116.900 2010=100 in Dec 2018. This records an increase from the previous number of 116.800 2010=100 for Nov 2018. Germany Consumer Price Index (CPI): 2010=100: MS: Social Protection data is updated monthly, averaging 99.550 2010=100 from Jan 2000 (Median) to Dec 2018, with 228 observations. The data reached an all-time high of 121.700 2010=100 in Dec 2016 and a record low of 80.600 2010=100 in Apr 2000. Germany Consumer Price Index (CPI): 2010=100: MS: Social Protection data remains active status in CEIC and is reported by Statistisches Bundesamt. The data is categorized under Global Database’s Germany – Table DE.I012: Consumer Price Index: by COICOP: 2010=100. Rebased from 2010=100 to 2015=100 Replacement series ID: 412819057

  5. G

    Germany DE: Claims on Other Sectors of The Domestic Economy: % of GDP

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Germany DE: Claims on Other Sectors of The Domestic Economy: % of GDP [Dataset]. https://www.ceicdata.com/en/germany/bank-loans/de-claims-on-other-sectors-of-the-domestic-economy--of-gdp
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2007 - Dec 1, 2018
    Area covered
    Germany
    Variables measured
    Loans
    Description

    Germany DE: Claims on Other Sectors of The Domestic Economy: % of GDP data was reported at 117.268 % in 2018. This records a decrease from the previous number of 119.535 % for 2017. Germany DE: Claims on Other Sectors of The Domestic Economy: % of GDP data is updated yearly, averaging 130.862 % from Dec 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 161.174 % in 2010 and a record low of 117.268 % in 2018. Germany DE: Claims on Other Sectors of The Domestic Economy: % of GDP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Bank Loans. Claims on other sectors of the domestic economy (IFS line 52S or 32S) include gross credit from the financial system to households, nonprofit institutions serving households, nonfinancial corporations, state and local governments, and social security funds.;International Monetary Fund, International Financial Statistics and data files, and World Bank and OECD GDP estimates.;Weighted average;

  6. d

    German Internet Panel, Wave 53 (May 2021)

    • da-ra.de
    Updated Dec 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annelies G. Blom; Marina Fikel; Marisabel Gonzalez Ocanto; Ulrich Krieger; Tobias Rettig (2021). German Internet Panel, Wave 53 (May 2021) [Dataset]. http://doi.org/10.4232/1.13834
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset provided by
    GESIS Data Archive
    da|ra
    Authors
    Annelies G. Blom; Marina Fikel; Marisabel Gonzalez Ocanto; Ulrich Krieger; Tobias Rettig
    Time period covered
    May 1, 2021 - May 31, 2021
    Area covered
    Germany
    Description

    Persons between 16 and 75 years of age who lived in private households at the time of recruitment

  7. G

    Germany CPI: 2015=100: MS: Social Protection

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Germany CPI: 2015=100: MS: Social Protection [Dataset]. https://www.ceicdata.com/en/germany/consumer-price-index-by-coicop-2015100/cpi-2015100-ms-social-protection
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2018 - Jan 1, 2019
    Area covered
    Germany
    Description

    Germany Consumer Price Index (CPI): 2015=100: MS: Social Protection data was reported at 106.300 2015=100 in Jan 2019. This records an increase from the previous number of 104.800 2015=100 for Dec 2018. Germany Consumer Price Index (CPI): 2015=100: MS: Social Protection data is updated monthly, averaging 103.200 2015=100 from Jan 2018 (Median) to Jan 2019, with 13 observations. The data reached an all-time high of 106.300 2015=100 in Jan 2019 and a record low of 101.800 2015=100 in Jan 2018. Germany Consumer Price Index (CPI): 2015=100: MS: Social Protection data remains active status in CEIC and is reported by Federal Statistics Office Germany. The data is categorized under Global Database’s Germany – Table DE.I009: Consumer Price Index: by COICOP: 2015=100.

  8. G

    Germany CPI: 2015=100: MS: Social Protection

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Germany CPI: 2015=100: MS: Social Protection [Dataset]. https://www.ceicdata.com/en/germany/consumer-price-index-by-coicop-2015100-annual/cpi-2015100-ms-social-protection
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2015 - Dec 1, 2018
    Area covered
    Germany
    Description

    Germany Consumer Price Index (CPI): 2015=100: MS: Social Protection data was reported at 103.300 2015=100 in 2018. This records an increase from the previous number of 99.600 2015=100 for 2017. Germany Consumer Price Index (CPI): 2015=100: MS: Social Protection data is updated yearly, averaging 101.650 2015=100 from Dec 2015 (Median) to 2018, with 4 observations. The data reached an all-time high of 104.200 2015=100 in 2016 and a record low of 99.600 2015=100 in 2017. Germany Consumer Price Index (CPI): 2015=100: MS: Social Protection data remains active status in CEIC and is reported by Federal Statistics Office Germany. The data is categorized under Global Database’s Germany – Table DE.I010: Consumer Price Index: by COICOP: 2015=100: Annual.

  9. Leading social media and messaging platforms in Germany 2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Leading social media and messaging platforms in Germany 2023 [Dataset]. https://www.statista.com/statistics/867539/top-active-social-media-platforms-in-germany/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    WhatsApp was the leading actively used messenger service in Germany in 2021. Almost 84 percent of users confirmed this. While WhatsApp is foremost a messaging service, certain features indicate similarities with social media networks, as sharing and posting between users still occurs, just not necessarily on a publicly accessible website. Delivering the message For most of the population, modern life is unimaginable without messenger apps. Texting has become much more varied as a form of communication thanks to extended file and content sharing options within messages. There is no doubt that WhatsApp is a popular messaging app in Germany. In 2023, almost 85 percent of people were messaging on WhatsApp every day. By 2025, it is estimated that over 53 million people will be using WhatsApp in Germany, suggesting it's popularity as a messaging app will not diminish with time. Personal data While Facebook is extremely popular in many different countries, long-term questions and concerns from users continue to arise, with personal data security being one of the leading topics of discussion. In general, the there have been many breaches of personal data online. At the same time, social media continues to enjoy rising popularity and use among the German population, both in a private and professional context.

  10. d

    German Internet Panel, Welle 35 (Mai 2018) German Internet Panel, Wave 35...

    • demo-b2find.dkrz.de
    Updated May 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). German Internet Panel, Welle 35 (Mai 2018) German Internet Panel, Wave 35 (May 2018) [Dataset]. http://demo-b2find.dkrz.de/dataset/2c4a77f8-8cec-5722-8373-19078d73fe23
    Explore at:
    Dataset updated
    May 15, 2018
    Area covered
    Deutschland
    Description

    Das German Internet Panel (GIP) ist ein Infrastrukturprojekt. Das GIP dient der Erhebung von Daten über individuelle Einstellungen und Präferenzen, die für politische und ökonomische Entscheidungsprozesse relevant sind. Der Fragebogen enthält experimentelle Variationen in den Erhebungsinstrumenten. Weitere Informationen finden Sie in der Studiendokumentation. Themen: Meinung zum Reformbedarf des Gesundheitssystems in Deutschland; befürwortete Maßnahmen um Einnahmen und Ausgaben des Gesundheitssystems im Gleichgewicht zu halten (höhere Beiträge zur Krankenversicherung, höhere private Zuzahlungen durch Patienten, allgemeine Steuererhöhungen, Kürzen der Vergütung von Ärzten, Apotheken und der Pharmaindustrie, Beschränkung der medizinischen Leistungen, die von der Krankenversicherung bezahlt werden, sonstiges, keine dieser Maßnahmen); Präferenz für Hausarztmodell oder freie Arztwahl; Meinung zum Reformbedarf der sozialen Sicherung von Arbeitslosen in Deutschland; Bedingungen für den Bezug von Hartz IV (ohne weitere Bedingungen, Bedürftigkeit, aktiv um Arbeit bemühen, zumutbare Arbeitsangebote annehmen, jedes Arbeitsangebot annehmen, zuvor in Deutschland gearbeitet haben, Besitz der deutschen Staatsbürgerschaft, sonstige Bedingungen (offen), Arbeitslosengeld II sollte ersatzlos abgeschafft werden bzw. abgeschafft und durch etwas anderes ersetzt werden); Bundesregierung sollte mehr oder weniger Regeln für den deutschen Arbeitsmarkt festsetzen als momentan; Meinung zum Reformbedarf des Rentensystems in Deutschland; am meisten (Split: am wenigsten) befürworteter Vorschlag zur Finanzierung der gesetzlichen Renten (höhere Beiträge zur gesetzlichen Rentenversicherung, Anhebung des Rentenalters, allgemeine Steuererhöhungen, Verringerung der Höhe der gesetzlichen Rente, keinen davon); Meinung zum Reformbedarf des Bildungssystems in Deutschland; Bundesregierung sollte mehr oder weniger Geld für das Bildungssystem ausgeben als momentan; wichtigster Bereich des Bildungssystems, für den die Bundesregierung mehr Geld (bzw. insbesondere weniger Geld) ausgeben sollte (Kinderbetreuung für 1- bis 5-Jährige, Grundschulen und weiterführende Schulen, berufliche Ausbildung, akademische Ausbildung, Weiterbildungsangebote für Berufstätige, sonstiger Bereich (offen), für keinen dieser Bereiche); Meinung zum Reformbedarf des Steuersystems in Deutschland allgemein und vor dem Hintergrund der mit den Steuern verbundenen Folgen; Forderung nach staatlichen Maßnahmen zur Verringerung von Einkommensunterschieden; Meinung zur Steuerbelastung von Vielverdienern; Meinung zum Reformbedarf der Arbeitsmarkt- und Sozialsysteme in den Mitgliedsstaaten der Euro-Zone allgemein und vor dem Hintergrund der Nachteile für einzelne Bevölkerungsgruppen; EU sollte mehr oder weniger über Reformen in den Mitgliedsstaaten entscheiden als momentan; Politikbereiche, in den die EU mehr bzw. weniger entscheiden sollte; Politikbereiche, in denen der Staat am ehesten Leistungen ausbauen bzw. abbauen sollte (Gesundheitsleistungen, Grundsicherung für Arbeitslose, Arbeitsförderung von Arbeitslosen, Altersrenten, Bildung, Kinderbetreuungsmöglichkeiten, in keinem dieser Bereiche); Wahrnehmung der Bundesregierung als zerstritten oder als geschlossen; Wahrnehmung der Parteien CDU, CSU, SPD, FDP, Bündnis90/Die Grünen, Die Linke und AfD als zerstritten oder als geschlossen; Rolle von Andrea Nahles als SPD-Parteivorsitzende; Bewertung der Kompetenz von Andrea Nahles als SPD-Parteivorsitzende. Demographie: Geschlecht; Alter (Geburtsjahr, kategorisiert); höchster Schulabschluss; höchster beruflicher Bildungsabschluss; Familienstand; Haushaltsgröße; Erwerbsstatus; deutsche Staatsbürgerschaft; Häufigkeit der privaten Internetnutzung; Bundesland. Zusätzlich verkodet wurde: Befragten- ID; Haushalts-ID, GIP; Personen-ID (innerhalb des Haushalts); Jahr der Rekrutierung (2012, 2014); Interviewdatum; derzeitiger Online-Status; Experimentalvariable. Fragebogenevaluation (interessant, abwechslungsreich, relevant, lang, schwierig, zu persönlich); Beurteilung der Befragung insgesamt; Befragter hat weitere Anmerkungen zum Fragebogen gemacht. The German Internet Panel (GIP) is an infrastructure project. The GIP serves to collect data about individual attitudes and preferences which are relevant for political and economic decision-making processes. The questionnaire contains experimental variations in the survey instruments. For further information, please refer to the study documentation. Topics: Opinion on the need for reform of the health care system in Germany; advocated measures to keep revenues and expenditures of the health care system in balance (higher contributions to health insurance, higher private co-payments by patients, general tax increases, cuts in the remuneration of physicians, pharmacies and the pharmaceutical industry, restriction of medical services paid for by the health insurance, other, none of these measures); Preference for family doctor model or free choice of doctor; opinion on the need for reform of the social security system for unemployed people in Germany; conditions for receiving Hartz IV (without further conditions, indigence, actively seeking work, accepting reasonable offers of work, accepting any offer of work, having previously worked in Germany, possession of German citizenship, other conditions (open), unemployment benefit II should be abolished without replacement or abolished and replaced by something else); Federal government should set more or less rules for the German labour market than at present; opinion on the need for reform of the pension system in Germany; most (split: least) supported proposal on the financing of statutory pensions (higher contributions to the statutory pension insurance, increase of the retirement age, general tax increases, reduction of the level of the statutory pension, none of them); opinion on the need for reform of the education system in Germany; federal government should spend more or less money on the education system than at present; most important area of the education system on which the federal government should spend more money or especially less money (childcare for 1-5 year olds, primary and secondary schools, vocational training, academic training, further education for working people, other area (open), none of these areas); opinion on the need for reform of the tax system in Germany in general and against the background of the consequences associated with taxes; demand for government measures to reduce income disparities; opinion on the tax burden on high-income earners; opinion on the need for reform of the labor market and social systems in the member states of the euro zone in general and against the background of the disadvantages for individual population groups; EU should decide more or less on reforms in the member states than it does at present; policy areas in which the EU should decide more or less; policy areas in which the state is most likely to extend or reduce benefits (health services, basic provision for the unemployed, employment promotion for the unemployed, old-age pensions, education, childcare facilities, in none of these areas); perception of the federal government as divided or closed; perception of the parties CDU, CSU, SPD, FDP, Bündnis90/Die Grünen, Die Linke and AfD as divided or closed; role of Andrea Nahles as SPD party leader; assessment of the competence of Andrea Nahles as SPD party leader. Demography: sex; age (year of birth, categorized); highest educational degree; highest professional qualification; marital status; household size; employment status; German citizenship; frequency of private Internet usage; federal state. Additionally coded was: respondent ID; household ID, GIP; person ID (within household); year of recruitment (2012, 2014); interview date; current online status; experimental variable. Questionnaire evaluation (interesting, varied, relevant, long, difficult, too personal); overall evaluation of the survey; respondent made further comments on the questionnaire.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2025). Germany DE: Time to Prepare and Pay Taxes [Dataset]. https://www.ceicdata.com/en/germany/company-statistics/de-time-to-prepare-and-pay-taxes

Germany DE: Time to Prepare and Pay Taxes

Explore at:
Dataset updated
Jan 15, 2025
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2008 - Dec 1, 2019
Area covered
Germany
Variables measured
Enterprises Statistics
Description

Germany DE: Time to Prepare and Pay Taxes data was reported at 218.000 Hour in 2019. This stayed constant from the previous number of 218.000 Hour for 2018. Germany DE: Time to Prepare and Pay Taxes data is updated yearly, averaging 218.000 Hour from Dec 2005 (Median) to 2019, with 15 observations. The data reached an all-time high of 221.000 Hour in 2011 and a record low of 196.000 Hour in 2009. Germany DE: Time to Prepare and Pay Taxes data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Company Statistics. Time to prepare and pay taxes is the time, in hours per year, it takes to prepare, file, and pay (or withhold) three major types of taxes: the corporate income tax, the value added or sales tax, and labor taxes, including payroll taxes and social security contributions.;World Bank, Doing Business project (http://www.doingbusiness.org/). NOTE: Doing Business has been discontinued as of 9/16/2021. For more information: https://bit.ly/3CLCbme;Unweighted average;Data are presented for the survey year instead of publication year.

Search
Clear search
Close search
Google apps
Main menu