The Fiscal Monitor surveys and analyzes the latest public finance developments, it updates fiscal implications of the crisis and medium-term fiscal projections, and assesses policies to put public finances on a sustainable footing.
Country-specific data and projections for key fiscal variables are based on the April 2020 World Economic Outlook database, unless indicated otherwise, and compiled by the IMF staff. Historical data and projections are based on information gathered by IMF country desk officers in the context of their missions and through their ongoing analysis of the evolving situation in each country; they are updated on a continual basis as more information becomes available. Structural breaks in data may be adjusted to produce smooth series through splicing and other techniques. IMF staff estimates serve as proxies when complete information is unavailable. As a result, Fiscal Monitor data can differ from official data in other sources, including the IMF's International Financial Statistics.
The country classification in the Fiscal Monitor divides the world into three major groups: 35 advanced economies, 40 emerging market and middle-income economies, and 40 low-income developing countries. The seven largest advanced economies as measured by GDP (Canada, France, Germany, Italy, Japan, United Kingdom, United States) constitute the subgroup of major advanced economies, often referred to as the Group of Seven (G7). The members of the euro area are also distinguished as a subgroup. Composite data shown in the tables for the euro area cover the current members for all years, even though the membership has increased over time. Data for most European Union member countries have been revised following the adoption of the new European System of National and Regional Accounts (ESA 2010). The low-income developing countries (LIDCs) are countries that have per capita income levels below a certain threshold (currently set at $2,700 in 2016 as measured by the World Bank's Atlas method), structural features consistent with limited development and structural transformation, and external financial linkages insufficiently close to be widely seen as emerging market economies. Zimbabwe is included in the group. Emerging market and middle-income economies include those not classified as advanced economies or low-income developing countries. See Table A, "Economy Groupings," for more details.
Most fiscal data refer to the general government for advanced economies, while for emerging markets and developing economies, data often refer to the central government or budgetary central government only (for specific details, see Tables B-D). All fiscal data refer to the calendar years, except in the cases of Bangladesh, Egypt, Ethiopia, Haiti, Hong Kong Special Administrative Region, India, the Islamic Republic of Iran, Myanmar, Nepal, Pakistan, Singapore, and Thailand, for which they refer to the fiscal year.
Composite data for country groups are weighted averages of individual-country data, unless otherwise specified. Data are weighted by annual nominal GDP converted to U.S. dollars at average market exchange rates as a share of the group GDP.
In many countries, fiscal data follow the IMF's Government Finance Statistics Manual 2014. The overall fiscal balance refers to net lending (+) and borrowing ("") of the general government. In some cases, however, the overall balance refers to total revenue and grants minus total expenditure and net lending.
The fiscal gross and net debt data reported in the Fiscal Monitor are drawn from official data sources and IMF staff estimates. While attempts are made to align gross and net debt data with the definitions in the IMF's Government Finance Statistics Manual, as a result of data limitations or specific country circumstances, these data can sometimes deviate from the formal definitions.
This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).
For a more detailed description of the dataset and the coding process, see the codebook available in the .zip-file.
Purpose:
This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).
Since the oil price shock in 1974 unemployment increased significantly and also did not really decline in periods of economic upswings in Europe. This is especially the case for the countries of the European Union; therefore we face a special need for explanation. Looking at the member states on finds considerable differences. Since 1977 the unemployment rate within the EU is higher than the average unemployment rate of all OECD countries. The economic upswing in the second half of the 80s relaxed the labor market but nevertheless the unemployment rate remained on a high level. This study deals with the development of unemployment between 1974 and 1993 in four different G7 countries: Germany, France, Great Britain and Italy. Besides the common trend of an increasing unemployment rate, there are significantly different developments within the four countries. The analysis is divided in two parts: the first part looks at the reasons for the increase in unemployment in the considered countries; the second part aims to explain the difference between the developments of unemployment during economic cycles in the different countries. After the description of similarities and differences of labor markets in the four countries it follows a long term analysis based on annual data as well as a short and medium term analysis on quarterly data. This is due to the fact that short and medium term developments are mainly influenced by cyclical economic developments but long term developments are mainly influenced by other factors like demographical and structural changes. A concrete question within this framework is if an increase in production potential can contribute to a decrease in unemployment. For the long term analysis among others the Hysteresis-hypothesis (Hysteresis = Greek: to remain; denotes the remaining effect; in this context: remaining of unemployment) used for the explanation of the persistence of a high unemployment rate. According to this approach consisting unemployment is barely decreased after economic recovery despite full utilization of capacity. According to the Hysteresis-hypothesis there are two reasons for this. The first reason is that for long term unemployed the abilities to work and the qualification level decreased, their human capital is partly devalued. The second reason is that employees give up wage restraint, because they do not fear unemployment anymore and therefore enforce higher real wages. Besides economic recovery companies are not willing to hire long term unemployed with a lower expected productivity for the higher established tariff wages. In the context of the empirical investigation a multiple explanatory approach is chosen which takes supply side and demand side factors into consideration. The short and medium term analysis refers to Okun´s law (=an increase in the unemployment rate is connected with a decrease of the GDP; if the unemployment rate stays unchanged, the GDP grows with 3% p.a.) and aims to analyze more detailed the reactions of unemployment to economic cycles. A geometrical lag-model is compared with a lag-model ager Almon. This should ensure a precise as possible analysis of the Okun´s relations and coefficients. Register of tables in HISTAT: A.: Unemployment in the European G7 countries B.: Analysis of unemployment in the Federal Republic of Germany C.: Basic numbers: International comparison A.: Unemployment in the European G7 countries A.1. Determinates of unemployment in the EU, Germany (1974-1993) A.2. Determinates of unemployment in the EU, France (1974-1993) A.3. Determinates of unemployment in the EU, Great Britain (1974-1993) A.4. Determinates of unemployment in the EU, Italy (1974-1993) B: Analysis of unemployment in the Federal Republic of Germany B.1. Growth of unemployment in the Federal Republic of Germany (1984-1991) B.2. Output and unemployment in the Federal Republic of Germany (1961-1990) C: Basic numbers: International comparison C.1. Unemployment in EU countries, the USA, Japan and Switzerland (1960-1996) C.2. Gainful employments in EU countries, the USA, Japan and Switzerland (after inland and residency concept) (1960-1996) C.3. Employees in EU countries, the USA and Japan (1960-1996) C.4. Population in EU countries, the USA and Japan (1960-1996)
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Fiscal Monitor surveys and analyzes the latest public finance developments, it updates fiscal implications of the crisis and medium-term fiscal projections, and assesses policies to put public finances on a sustainable footing.
Country-specific data and projections for key fiscal variables are based on the April 2020 World Economic Outlook database, unless indicated otherwise, and compiled by the IMF staff. Historical data and projections are based on information gathered by IMF country desk officers in the context of their missions and through their ongoing analysis of the evolving situation in each country; they are updated on a continual basis as more information becomes available. Structural breaks in data may be adjusted to produce smooth series through splicing and other techniques. IMF staff estimates serve as proxies when complete information is unavailable. As a result, Fiscal Monitor data can differ from official data in other sources, including the IMF's International Financial Statistics.
The country classification in the Fiscal Monitor divides the world into three major groups: 35 advanced economies, 40 emerging market and middle-income economies, and 40 low-income developing countries. The seven largest advanced economies as measured by GDP (Canada, France, Germany, Italy, Japan, United Kingdom, United States) constitute the subgroup of major advanced economies, often referred to as the Group of Seven (G7). The members of the euro area are also distinguished as a subgroup. Composite data shown in the tables for the euro area cover the current members for all years, even though the membership has increased over time. Data for most European Union member countries have been revised following the adoption of the new European System of National and Regional Accounts (ESA 2010). The low-income developing countries (LIDCs) are countries that have per capita income levels below a certain threshold (currently set at $2,700 in 2016 as measured by the World Bank's Atlas method), structural features consistent with limited development and structural transformation, and external financial linkages insufficiently close to be widely seen as emerging market economies. Zimbabwe is included in the group. Emerging market and middle-income economies include those not classified as advanced economies or low-income developing countries. See Table A, "Economy Groupings," for more details.
Most fiscal data refer to the general government for advanced economies, while for emerging markets and developing economies, data often refer to the central government or budgetary central government only (for specific details, see Tables B-D). All fiscal data refer to the calendar years, except in the cases of Bangladesh, Egypt, Ethiopia, Haiti, Hong Kong Special Administrative Region, India, the Islamic Republic of Iran, Myanmar, Nepal, Pakistan, Singapore, and Thailand, for which they refer to the fiscal year.
Composite data for country groups are weighted averages of individual-country data, unless otherwise specified. Data are weighted by annual nominal GDP converted to U.S. dollars at average market exchange rates as a share of the group GDP.
In many countries, fiscal data follow the IMF's Government Finance Statistics Manual 2014. The overall fiscal balance refers to net lending (+) and borrowing ("") of the general government. In some cases, however, the overall balance refers to total revenue and grants minus total expenditure and net lending.
The fiscal gross and net debt data reported in the Fiscal Monitor are drawn from official data sources and IMF staff estimates. While attempts are made to align gross and net debt data with the definitions in the IMF's Government Finance Statistics Manual, as a result of data limitations or specific country circumstances, these data can sometimes deviate from the formal definitions.