Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.
Datasets
DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.
DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.
DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.
Please refer to the related publication for details.
Temporal extent
The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)
The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)
The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)
The underlying census data is from 2018.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de). A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
Census data were provided by the German Federal Statistical Offices.
Funding This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features a map of building types for Germany on a 10m grid based on Sentinel-1A/B and Sentinel-2A/B time series. A random forest classification was used to map the predominant type of buildings within a pixel. We distinguish single-family residential buildings, multi-family residential buildings, commercial and industrial buildings and lightweight structures. Building types were predicted for all pixels where building density > 25 %. Please refer to the publication for details.
Temporal extent
Sentinel-2 time series data are from 2018. Sentinel-1 time series data are from 2017.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). Metadata are located within the Tiff, partly in the FORCE domain. There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. Building type values are categorical, according to the following scheme:
0 - No building
1 - Commercial and industrial buildings
2 - Single-family residential buildings
3 - Lightweight structures
4 - Multi-family residential buildings
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
The dataset was generated by FORCE v. 3.1 (paper, code), which is freely available software under the terms of the GNU General Public License v. >= 3. Sentinel imagery were obtained from the European Space Agency and the European Commission.
Funding
This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A total of 54 Geotiffs in EPSG:4326 (can easily be opened with GIS software such as ArcGIS or QGIS) is provided . These maps are the results of 18 scenarios (S01-S18) proposed to evaluate technical requirements of electricity self-sufficient single family houses in low population density areas in Germany and the Czech Republic. The non-data values inside of the territory of the countries correspond either to pixels with no population or population beyond 1,500 inhabitants per square kilometre (The classification was made using population data from the LUISA project of the Joint Research Centre of the European Commission). The file names can be interpreted in the same way as the following example: S01_Battery_min_cost_no_sc.tif where S01 is the scenario number (01 to 18 are possible), Battery is the type of technology presented in the map (there are also optimally tilted photovoltaic panels named "PV1" and photovoltaic panels with 70° inclination named "PV2"), “min” stands for minimizing and the following word stands for the minimization objective. In this case with “cost” the objective of the scenario is to minimize cost (“battery” for battery size and “pv” for photovoltaic size are also possible). Additionally, there is “no_sc” for case studies that do not consider snow cover and "sc" in case snow cover is considered. Finally some of the files include a year at the end of the file name. This stands for the year of the irradiation and temperature data sets that were used to run the scenario. All files without a year correspond to scenarios calculated with average weather data (Average hours calculated from two decades of data from the COSMO-REA6 regional reanalysis).
Average number of heatwave days per year versus socio economic data - base scenario (1986-2005)
Heat stress exposure maps for the city of Berlin representing the average number of heatwave days per year versus socio economic data per statistical unit. The average number of heatwave days per year has been modelled over the reference period 1986-2005 using the present land use / cover situation for the city.
Exposure mapping variable include the following:
Total population 2013
Population density inhabitants per hectare 2013
Number of inhabitants aged 0 to 17 years 2013
Number of inhabitants aged 18 to 65 years 2013
Number of inhabitants aged +65 years 2013
Number of schools 2014
Number of childcare centers 2014
Number of hospitals 2014
Number of elderly stay facilities 2014
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Synthetic populations for regions of the World (SPW) | Germany
Dataset information
A synthetic population of a region as provided here, captures the people of the region with selected demographic attributes, their organization into households, their assigned activities for a day, the locations where the activities take place and thus where interactions among population members happen (e.g., spread of epidemics).
License
Acknowledgment
This project was supported by the National Science Foundation under the NSF RAPID: COVID-19 Response Support: Building Synthetic Multi-scale Networks (PI: Madhav Marathe, Co-PIs: Henning Mortveit, Srinivasan Venkatramanan; Fund Number: OAC-2027541).
Contact information
Henning.Mortveit@virginia.edu
Identifiers
Region name | Germany |
Region ID | deu |
Model | coarse |
Version | 0_9_0 |
Statistics
Name | Value |
---|---|
Population | 80298171.0 |
Average age | 43.4 |
Households | 37501987.0 |
Average household size | 2.1 |
Residence locations | 37501987.0 |
Activity locations | 7864868.0 |
Average number of activities | 5.7 |
Average travel distance | 41.0 |
Sources
Description | Name | Version | Url |
---|---|---|---|
Activity template data | World Bank | 2021 | https://data.worldbank.org |
Administrative boundaries | ADCW | 7.6 | https://www.adci.com/adc-worldmap |
Curated POIs based on OSM | SLIPO/OSM POIs | http://slipo.eu/?p=1551 https://www.openstreetmap.org/ | |
Household data | DYB | https://unstats.un.org/unsd/demographic/products/dyb/dyb_Household/dyb_household.htm | |
Population count with demographic attributes | GPW | v4.11 | https://sedac.ciesin.columbia.edu/data/set/gpw-v4-admin-unit-center-points-population-estimates-rev11 |
Files description
Base data files (deu_data_v_0_9.zip)
Filename | Description |
---|---|
deu_person_v_0_9.csv | Data for each person including attributes such as age, gender, and household ID. |
deu_household_v_0_9.csv | Data at household level. |
deu_residence_locations_v_0_9.csv | Data about residence locations |
deu_activity_locations_v_0_9.csv | Data about activity locations, including what activity types are supported at these locations |
deu_activity_location_assignment_v_0_9.csv | For each person and for each of their activities, this file specifies the location where the activity takes place |
Derived data files
Filename | Description |
---|---|
deu_contact_matrix_v_0_9.csv | A POLYMOD-type contact matrix constructed from a network representation of the location assignment data and a within-location contact model. |
Validation and measures files
Filename | Description |
---|---|
deu_household_grouping_validation_v_0_9.pdf | Validation plots for household construction |
deu_activity_durations_{adult,child}_v_0_9.pdf | Comparison of time spent on generated activities with survey data |
deu_activity_patterns_{adult,child}_v_0_9.pdf | Comparison of generated activity patterns by the time of day with survey data |
deu_location_construction_0_9.pdf | Validation plots for location construction |
deu_location_assignement_0_9.pdf | Validation plots for location assignment, including travel distribution plots |
deu_deu_ver_0_9_0_avg_travel_distance.pdf | Choropleth map visualizing average travel distance |
deu_deu_ver_0_9_0_travel_distr_combined.pdf | Travel distance distribution |
deu_deu_ver_0_9_0_num_activity_loc.pdf | Choropleth map visualizing number of activity locations |
deu_deu_ver_0_9_0_avg_age.pdf | Choropleth map visualizing average age |
deu_deu_ver_0_9_0_pop_density_per_sqkm.pdf | Choropleth map visualizing population density |
deu_deu_ver_0_9_0_pop_size.pdf | Choropleth map visualizing population size |
APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.
What sets APISCRAPY's Map Data apart are its key benefits:
Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.
Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.
Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.
Our Map Data solutions cater to various use cases:
B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.
Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.
Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.
Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.
Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.
Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.
Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.
[ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.
Datasets
DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.
DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.
DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.
Please refer to the related publication for details.
Temporal extent
The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)
The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)
The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)
The underlying census data is from 2018.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de). A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
Census data were provided by the German Federal Statistical Offices.
Funding This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).