7 datasets found
  1. Z

    Gridded population maps of Germany from disaggregated census data and...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Mar 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    van der Linden, Sebastian (2021). Gridded population maps of Germany from disaggregated census data and bottom-up estimates [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4601291
    Explore at:
    Dataset updated
    Mar 13, 2021
    Dataset provided by
    Frantz, David
    Hostert, Patrick
    van der Linden, Sebastian
    Schug, Franz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.

    Datasets

    DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.

    DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.

    DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.

    Please refer to the related publication for details.

    Temporal extent

    The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)

    The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)

    The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)

    The underlying census data is from 2018.

    Data format

    The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.

    Further information

    For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de). A web-visualization of this dataset is available here.

    Publication

    Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044

    Acknowledgements

    Census data were provided by the German Federal Statistical Offices.

    Funding This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).

  2. Population Density Around the Globe

    • covid19.esriuk.com
    • directrelief.hub.arcgis.com
    • +3more
    Updated Feb 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2015). Population Density Around the Globe [Dataset]. https://covid19.esriuk.com/maps/fb393372ef8347b19491f3eb8c859a82
    Explore at:
    Dataset updated
    Feb 14, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics

  3. Building types map of Germany

    • zenodo.org
    • explore.openaire.eu
    • +1more
    zip
    Updated Mar 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franz Schug; Franz Schug; David Frantz; David Frantz; Sebastian van der Linden; Patrick Hostert; Sebastian van der Linden; Patrick Hostert (2021). Building types map of Germany [Dataset]. http://doi.org/10.5281/zenodo.4601219
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 13, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Franz Schug; Franz Schug; David Frantz; David Frantz; Sebastian van der Linden; Patrick Hostert; Sebastian van der Linden; Patrick Hostert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    This dataset features a map of building types for Germany on a 10m grid based on Sentinel-1A/B and Sentinel-2A/B time series. A random forest classification was used to map the predominant type of buildings within a pixel. We distinguish single-family residential buildings, multi-family residential buildings, commercial and industrial buildings and lightweight structures. Building types were predicted for all pixels where building density > 25 %. Please refer to the publication for details.

    Temporal extent

    Sentinel-2 time series data are from 2018. Sentinel-1 time series data are from 2017.

    Data format

    The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). Metadata are located within the Tiff, partly in the FORCE domain. There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. Building type values are categorical, according to the following scheme:

    0 - No building

    1 - Commercial and industrial buildings

    2 - Single-family residential buildings

    3 - Lightweight structures

    4 - Multi-family residential buildings

    Further information

    For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
    A web-visualization of this dataset is available here.

    Publication

    Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044

    Acknowledgements

    The dataset was generated by FORCE v. 3.1 (paper, code), which is freely available software under the terms of the GNU General Public License v. >= 3. Sentinel imagery were obtained from the European Space Agency and the European Commission.

    Funding
    This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).

  4. m

    Data from: Maps of Germany and the Czech Republic with photovoltaic and...

    • data.mendeley.com
    Updated Jun 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luis Ramirez Camargo (2018). Maps of Germany and the Czech Republic with photovoltaic and battery system sizes for electricity self-sufficient single-family houses under 18 technical and weather dependent scenarios [Dataset]. http://doi.org/10.17632/txvbyxbp9t.1
    Explore at:
    Dataset updated
    Jun 25, 2018
    Authors
    Luis Ramirez Camargo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Czechia, Germany
    Description

    A total of 54 Geotiffs in EPSG:4326 (can easily be opened with GIS software such as ArcGIS or QGIS) is provided . These maps are the results of 18 scenarios (S01-S18) proposed to evaluate technical requirements of electricity self-sufficient single family houses in low population density areas in Germany and the Czech Republic. The non-data values inside of the territory of the countries correspond either to pixels with no population or population beyond 1,500 inhabitants per square kilometre (The classification was made using population data from the LUISA project of the Joint Research Centre of the European Commission). The file names can be interpreted in the same way as the following example: S01_Battery_min_cost_no_sc.tif where S01 is the scenario number (01 to 18 are possible), Battery is the type of technology presented in the map (there are also optimally tilted photovoltaic panels named "PV1" and photovoltaic panels with 70° inclination named "PV2"), “min” stands for minimizing and the following word stands for the minimization objective. In this case with “cost” the objective of the scenario is to minimize cost (“battery” for battery size and “pv” for photovoltaic size are also possible). Additionally, there is “no_sc” for case studies that do not consider snow cover and "sc" in case snow cover is considered. Finally some of the files include a year at the end of the file name. This stands for the year of the irradiation and temperature data sets that were used to run the scenario. All files without a year correspond to scenarios calculated with average weather data (Average hours calculated from two decades of data from the COSMO-REA6 regional reanalysis).

  5. Heat Stress Exposure Maps - Base Scenario 1986 - 2005: Berlin, Germany

    • zenodo.org
    bin, pdf
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Catherine Stevens; Dirk Lauwaet; Catherine Stevens; Dirk Lauwaet (2024). Heat Stress Exposure Maps - Base Scenario 1986 - 2005: Berlin, Germany [Dataset]. http://doi.org/10.5281/zenodo.45015
    Explore at:
    bin, pdfAvailable download formats
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Catherine Stevens; Dirk Lauwaet; Catherine Stevens; Dirk Lauwaet
    Area covered
    Germany, Berlin
    Description

    Average number of heatwave days per year versus socio economic data - base scenario (1986-2005)

    Heat stress exposure maps for the city of Berlin representing the average number of heatwave days per year versus socio economic data per statistical unit. The average number of heatwave days per year has been modelled over the reference period 1986-2005 using the present land use / cover situation for the city.

    Exposure mapping variable include the following:

    Total population 2013

    Population density inhabitants per hectare 2013

    Number of inhabitants aged 0 to 17 years 2013

    Number of inhabitants aged 18 to 65 years 2013

    Number of inhabitants aged +65 years 2013

    Number of schools 2014

    Number of childcare centers 2014

    Number of hospitals 2014

    Number of elderly stay facilities 2014

  6. Synthetic population for DEU

    • zenodo.org
    bin, pdf, zip
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhijin Adiga; Hannah Baek; Stephen Eubank; Przemyslaw Porebski; Madhav Marathe; Henning Mortveit; Samarth Swarup; Mandy Wilson; Dawen Xie; Abhijin Adiga; Hannah Baek; Stephen Eubank; Przemyslaw Porebski; Madhav Marathe; Henning Mortveit; Samarth Swarup; Mandy Wilson; Dawen Xie (2024). Synthetic population for DEU [Dataset]. http://doi.org/10.5281/zenodo.6503318
    Explore at:
    bin, pdf, zipAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Abhijin Adiga; Hannah Baek; Stephen Eubank; Przemyslaw Porebski; Madhav Marathe; Henning Mortveit; Samarth Swarup; Mandy Wilson; Dawen Xie; Abhijin Adiga; Hannah Baek; Stephen Eubank; Przemyslaw Porebski; Madhav Marathe; Henning Mortveit; Samarth Swarup; Mandy Wilson; Dawen Xie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Synthetic populations for regions of the World (SPW) | Germany

    Dataset information

    A synthetic population of a region as provided here, captures the people of the region with selected demographic attributes, their organization into households, their assigned activities for a day, the locations where the activities take place and thus where interactions among population members happen (e.g., spread of epidemics).

    License

    CC-BY-4.0

    Acknowledgment

    This project was supported by the National Science Foundation under the NSF RAPID: COVID-19 Response Support: Building Synthetic Multi-scale Networks (PI: Madhav Marathe, Co-PIs: Henning Mortveit, Srinivasan Venkatramanan; Fund Number: OAC-2027541).

    Contact information

    Henning.Mortveit@virginia.edu

    Identifiers

    Region nameGermany
    Region IDdeu
    Modelcoarse
    Version0_9_0

    Statistics

    NameValue
    Population80298171.0
    Average age43.4
    Households37501987.0
    Average household size2.1
    Residence locations37501987.0
    Activity locations7864868.0
    Average number of activities5.7
    Average travel distance41.0

    Sources

    DescriptionNameVersionUrl
    Activity template dataWorld Bank2021https://data.worldbank.org
    Administrative boundariesADCW7.6https://www.adci.com/adc-worldmap
    Curated POIs based on OSMSLIPO/OSM POIshttp://slipo.eu/?p=1551 https://www.openstreetmap.org/
    Household dataDYBhttps://unstats.un.org/unsd/demographic/products/dyb/dyb_Household/dyb_household.htm
    Population count with demographic attributesGPWv4.11https://sedac.ciesin.columbia.edu/data/set/gpw-v4-admin-unit-center-points-population-estimates-rev11

    Files description

    Base data files (deu_data_v_0_9.zip)

    FilenameDescription
    deu_person_v_0_9.csvData for each person including attributes such as age, gender, and household ID.
    deu_household_v_0_9.csvData at household level.
    deu_residence_locations_v_0_9.csvData about residence locations
    deu_activity_locations_v_0_9.csvData about activity locations, including what activity types are supported at these locations
    deu_activity_location_assignment_v_0_9.csvFor each person and for each of their activities, this file specifies the location where the activity takes place

    Derived data files

    FilenameDescription
    deu_contact_matrix_v_0_9.csvA POLYMOD-type contact matrix constructed from a network representation of the location assignment data and a within-location contact model.

    Validation and measures files

    FilenameDescription
    deu_household_grouping_validation_v_0_9.pdfValidation plots for household construction
    deu_activity_durations_{adult,child}_v_0_9.pdfComparison of time spent on generated activities with survey data
    deu_activity_patterns_{adult,child}_v_0_9.pdfComparison of generated activity patterns by the time of day with survey data
    deu_location_construction_0_9.pdfValidation plots for location construction
    deu_location_assignement_0_9.pdfValidation plots for location assignment, including travel distribution plots
    deu_deu_ver_0_9_0_avg_travel_distance.pdfChoropleth map visualizing average travel distance
    deu_deu_ver_0_9_0_travel_distr_combined.pdfTravel distance distribution
    deu_deu_ver_0_9_0_num_activity_loc.pdfChoropleth map visualizing number of activity locations
    deu_deu_ver_0_9_0_avg_age.pdfChoropleth map visualizing average age
    deu_deu_ver_0_9_0_pop_density_per_sqkm.pdfChoropleth map visualizing population density
    deu_deu_ver_0_9_0_pop_size.pdfChoropleth map visualizing population size

  7. d

    Google Map Data, Google Map Data Scraper, Business location Data- Scrape All...

    • datarade.ai
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Map Data, Google Map Data Scraper, Business location Data- Scrape All Publicly Available Data From Google Map & Other Platforms [Dataset]. https://datarade.ai/data-products/google-map-data-google-map-data-scraper-business-location-d-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Switzerland, Macedonia (the former Yugoslav Republic of), Svalbard and Jan Mayen, Denmark, Serbia, Gibraltar, Bulgaria, United States of America, Albania, Japan
    Description

    APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.

    What sets APISCRAPY's Map Data apart are its key benefits:

    1. Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.

    2. Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.

    3. Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.

    Our Map Data solutions cater to various use cases:

    1. B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.

    2. Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.

    3. Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.

    4. Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.

    5. Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.

    6. Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.

    Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.

    [ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
van der Linden, Sebastian (2021). Gridded population maps of Germany from disaggregated census data and bottom-up estimates [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4601291

Gridded population maps of Germany from disaggregated census data and bottom-up estimates

Explore at:
Dataset updated
Mar 13, 2021
Dataset provided by
Frantz, David
Hostert, Patrick
van der Linden, Sebastian
Schug, Franz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Germany
Description

This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.

Datasets

DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.

DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.

DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.

Please refer to the related publication for details.

Temporal extent

The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)

The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)

The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)

The underlying census data is from 2018.

Data format

The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.

Further information

For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de). A web-visualization of this dataset is available here.

Publication

Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044

Acknowledgements

Census data were provided by the German Federal Statistical Offices.

Funding This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).

Search
Clear search
Close search
Google apps
Main menu