Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.
According to our latest research, the global web analytics market size was valued at USD 8.4 billion in 2024, reflecting robust growth driven by the increasing adoption of digital platforms across industries. The market is projected to expand at a compound annual growth rate (CAGR) of 17.2% from 2025 to 2033, reaching an estimated USD 36.8 billion by 2033. This significant upsurge is primarily attributed to the escalating demand for actionable insights, data-driven decision-making, and the proliferation of online consumer activity. As per the latest research, enterprises worldwide are leveraging advanced web analytics tools to enhance customer engagement, improve marketing strategies, and drive business outcomes.
One of the principal growth factors fueling the web analytics market is the exponential increase in digitalization and internet penetration. Organizations across various sectors are rapidly transitioning their operations online, resulting in a surge of data generation through multiple digital touchpoints. This digital transformation has heightened the need for sophisticated web analytics solutions that can process vast volumes of data, extract meaningful patterns, and provide actionable insights. Moreover, the rise in e-commerce activities, coupled with the growing popularity of social media platforms, has created a fertile environment for the adoption of web analytics, enabling businesses to track consumer behavior, measure campaign effectiveness, and optimize user experiences.
Another critical driver for the web analytics market is the integration of artificial intelligence (AI) and machine learning (ML) technologies. These advanced technologies are revolutionizing the way organizations analyze web data by enabling predictive analytics, real-time reporting, and personalized recommendations. AI-powered web analytics tools can automatically identify trends, anomalies, and customer preferences, empowering businesses to make data-driven decisions faster and more accurately. Furthermore, the increasing focus on omnichannel marketing strategies and the need to unify customer data across different platforms have further accelerated the demand for comprehensive web analytics solutions.
The regulatory landscape and growing emphasis on data privacy and compliance are also shaping the web analytics market. With the implementation of stringent data protection regulations such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, organizations are compelled to adopt web analytics tools that ensure data security and privacy. This has led to the development of privacy-centric analytics platforms that offer enhanced data governance features, enabling businesses to comply with global regulatory requirements while still deriving valuable insights from web data. The ability to balance data-driven innovation with privacy considerations is becoming a key differentiator for vendors in this dynamic market.
From a regional perspective, North America continues to dominate the web analytics market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The region’s leadership is attributed to the presence of major technology providers, a mature digital ecosystem, and high levels of investment in analytics infrastructure. However, Asia Pacific is expected to witness the fastest growth during the forecast period, driven by the rapid adoption of digital technologies, expanding internet user base, and increasing investments in e-commerce and digital marketing. The growing awareness among businesses in emerging economies about the benefits of web analytics is further propelling market growth in this region.
The web analytics market by component is bifurcated into software and services, with each segment playing a pivotal role in market expansion. The software segment holds the lion’s share of the market, driven by the continuous evolution of analytics plat
Web traffic statistics for the top 2000 most visited pages on nyc.gov by month.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly analytics reports for the Brisbane City Council website
Information regarding the sessions for Brisbane City Council website during the month including page views and unique page views.
DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:
• Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.
Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.
You will find well-rounded ways to scout the competitors:
• Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.
All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.
The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.
We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.
We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.
This PowerPoint included accomplishments reached in January 2017, along with how many TS users and Pulse users there are currently. Not only does this PowerPoint demonstrate how many users TS has but it has detail analysis of what pages people are navigating to on both pages.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
** Note: This dataset has been archived and is no longer being updated due to a change in analytics platform. You can find the new dataset relating to Website Statistics in the following link; https://lincolnshire.ckan.io/dataset/website-statistics ** This Website Statistics dataset has three resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file. - Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year. - Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year. - Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year. Note: The resources above show only UK users, and exclude API calls (automated requests for datasets). For further information, please contact the Lincolnshire County Council Open Data team.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Information Victoria collects usage information of the www.egov.vic.gov.au website using Google Analytics. Google Analytics anonymously tracks how our visitors interact with this website, including where they came from, what they did on the site, and whether they completed any transactions on the site such as newsletter registration. The data is collected for the purpose of optimising website performance.
The data available includes:
Further information about website data collection is available from here.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Web design service companies have experienced significant growth over the past few years, driven by the expanding use of the Internet. As online operations have become more widespread, businesses and consumers have increasingly recognized the importance of maintaining an online presence, leading to robust demand for web design services and boosting the industry’s profit. The rise in broadband connections and online business activities further spotlight this trend, making web design a vital component of modern commerce and communication. This solid foundation suggests the industry has been thriving despite facing some economic turbulence related to global events and shifting financial climates. Over the past few years, web design companies have navigated a dynamic landscape marked by both opportunities and challenges. Strong economic conditions have typically favored the industry, with rising disposable incomes and low unemployment rates encouraging both consumers and businesses to invest in professional web design. Despite this, the sector also faced hurdles such as high inflation, which made cost increases necessary and pushed some customers towards cheaper substitutes such as website templates and in-house production, causing a slump in revenue in 2022. Despite these obstacles, the industry has demonstrated resilience against rising interest rates and economic uncertainties by focusing on enhancing user experience and accessibility. Overall, revenue for web design service companies is anticipated to rise at a CAGR of 2.2% during the current period, reaching $43.5 billion in 2024. This includes a 2.2% jump in revenue in that year. Looking ahead, web design companies will continue to do well, as the strong performance of the US economy will likely support ongoing demand for web design services, bolstered by higher consumer spending and increased corporate profit. On top of this, government investment, especially at the state and local levels, will provide further revenue streams as public agencies seek to upgrade their web presence. Innovation remains key, with a particular emphasis on designing for mobile devices as more activities shift to on-the-go platforms. Companies that can effectively adapt to these trends and invest in new technologies will likely capture a significant market share, fostering an environment where entry remains feasible yet competitive. Overall, revenue for web design service providers is forecast to swell at a CAGR of 1.9% during the outlook period, reaching $47.7 billion in 2029.
This Website Statistics dataset has three resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file. Please Note: due to a change in Analytics platform and accompanying metrics, the current files do not contain a full years data. The files will be updated again in January 2025 with 2024-2025 data. The previous dataset containing Web Analytics has been archived and can be found in the following link; https://lincolnshire.ckan.io/dataset/website-statistics-archived - Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year. - Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year. - Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year. Note: The resources above exclude API calls (automated requests for datasets). These Website Statistics resources are updated annually in February by the Lincolnshire County Council Open Data team.
The googleanalyticsbasic extension for CKAN provides a simple way to integrate Google Analytics tracking into your CKAN-based data catalog. It injects the Google Analytics asynchronous tracking code into the page headers of your CKAN site, enabling basic page view tracking. This allows you to monitor site traffic and user behavior via the Google Analytics dashboard and therefore gain insights into how users interact with your data portal. This extension is compatible with CKAN versions 2.9 and 2.10. Key Features: Easy Google Analytics Integration: Simplifies the process of adding Google Analytics tracking to a CKAN site. You do not need to edit templates or write complex code, as the extension handles the injection of the tracking code. Asynchronous Tracking: Uses the asynchronous Google Analytics tracking code, which is designed to minimize any potential impact on page load times. Configuration via INI File: Enables the setting of Google Analytics tracking IDs via the CKAN configuration file (development.ini or similar). The extension uses a space-separated list of these google ids. Basic Page Tracking: Provides standard page view tracking functionality within Google Analytics. This is suited to monitoring how many hits each CKAN page receives and gives you an overview of site engagement. Compatibility: Supports CKAN versions 2.9 and 2.10. Use Cases: Usage Monitoring: Administrators can track essential metrics such as page views and user visits. Effectiveness Assessment: Evaluating the performance of data portals over time is improved with analytical insights. Informed Decisions: Providing data-driven basis for decisions, such as the prioritization of new features. Technical Integration: The googleanalyticsbasic extension integrates with CKAN by adding the required HTML to CKAN's pages using CKAN's plugin system. You need to activate the plugin in your CKAN configuration file and specify the Google Analytics tracking IDs you want to use. The extension then automatically inserts the tracking code into the appropriate sections of your CKAN pages. This is a simple process that requires no modification of the CKAN core code or installed template files. Benefits & Impact: By implementing the googleanalyticsbasic extension, CKAN site administrators can effortlessly monitor website traffic and user behaviour. This understanding can refine data portal content, improve site usability, and ultimately drive greater data accessibility and user engagement. This monitoring leads to better content development and resource prioritisation across the CKAN catalog.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2018. For a description of the data collection, processing, and output methods, please see the "methods" section below. Note that the RAMP data model changed in August, 2018 and two sets of documentation are provided to describe data collection and processing before and after the change.
Methods
RAMP Data Documentation – January 1, 2017 through August 18, 2018
Data Collection
RAMP data were downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data from January 1, 2017 through August 18, 2018 were downloaded in one dataset per participating IR. The following fields were downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
country: The country from which the corresponding search originated.
device: The device used for the search.
date: The date of the search.
Following data processing describe below, on ingest into RAMP an additional field, citableContent, is added to the page level data.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, data are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the data which records whether each URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
Processed data are then saved in a series of Elasticsearch indices. From January 1, 2017, through August 18, 2018, RAMP stored data in one index per participating IR.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.
CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).
For any specified date range, the steps to calculate CCD are:
Filter data to only include rows where "citableContent" is set to "Yes."
Sum the value of the "clicks" field on these rows.
Output to CSV
Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above.
The data in these CSV files include the following fields:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
country: The country from which the corresponding search originated.
device: The device used for the search.
date: The date of the search.
citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
index: The Elasticsearch index corresponding to page click data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the index field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data follow the format 2018-01_RAMP_all.csv. Using this example, the file 2018-01_RAMP_all.csv contains all data for all RAMP participating IR for the month of January, 2018.
Data Collection from August 19, 2018 Onward
RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.
The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:
country: The country from which the corresponding search originated.
device: The device used for the search.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.
Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2021. For a description of the data collection, processing, and output methods, please see the "methods" section below.
The record will be revised periodically to make new data available through the remainder of 2021.
Methods
Data Collection
RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.
The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:
country: The country from which the corresponding search originated.
device: The device used for the search.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.
Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.
CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).
For any specified date range, the steps to calculate CCD are:
Filter data to only include rows where "citableContent" is set to "Yes."
Sum the value of the "clicks" field on these rows.
Output to CSV
Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above. Also as noted above, daily data are downloaded for each IR in two sets which cannot be combined. One dataset includes the URLs of items that appear in SERP. The second dataset is aggregated by combination of the country from which a search was conducted and the device used.
As a result, two CSV datasets are provided for each month of published data:
page-clicks:
The data in these CSV files correspond to the page-level data, and include the following fields:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
index: The Elasticsearch index corresponding to page click data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data end with “page-clicks”. For example, the file named 2021-01_RAMP_all_page-clicks.csv contains page level click data for all RAMP participating IR for the month of January, 2021.
country-device-info:
The data in these CSV files correspond to the data aggregated by country from which a search was conducted and the device used. These include the following fields:
country: The country from which the corresponding search originated.
device: The device used for the search.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
index: The Elasticsearch index corresponding to country and device access information data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data end with “country-device-info”. For example, the file named 2021-01_RAMP_all_country-device-info.csv contains country and device data for all participating IR for the month of January, 2021.
References
Google, Inc. (2021). Search Console APIs. Retrieved from https://developers.google.com/webmaster-tools/search-console-api-original.
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Comparison of Price: USD per 1M Tokens by Model
This dataset is a complete inventory of all assets on this site and any assets sourced from other sites, if applicable. Use this dataset to track the performance of data publishing, conduct metadata maintenance, or present an overview of what kinds of data exists on the site.
Success.ai is at the forefront of delivering precise consumer behavior insights that empower businesses to understand and anticipate customer needs more effectively. Our extensive datasets provide a deep dive into the nuances of consumer actions, preferences, and trends, enabling businesses to tailor their strategies for maximum engagement and conversion.
Explore the Multifaceted Dimensions of Consumer Behavior:
Why Choose Success.ai for Consumer Behavior Data?
Strategic Applications of Consumer Behavior Data for Business Growth:
Empower Your Business with Actionable Consumer Insights from Success.ai
Success.ai provides not just data, but a gateway to transformative business strategies. Our comprehensive consumer behavior insights allow you to make informed decisions, personalize customer interactions, and ultimately drive higher engagement and sales.
Get in touch with us today to discover how our Consumer Behavior Intent Data can revolutionize your business strategies and help you achieve your market potential.
Contact Success.ai now and start transforming data into growth. Let us show you how our unmatched data solutions can be the cornerstone of your business success.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Internet has become one of the main sources of information for university students’ learning. Since anyone can disseminate content online, however, the Internet is full of irrelevant, biased, or even false information. Thus, students’ ability to use online information in a critical-reflective manner is of crucial importance. In our study, we used a framework for the assessment of students’ critical online reasoning (COR) to measure university students’ ability to critically use information from online sources and to reason on contentious issues based on online information. In addition to analyzing students’ COR by evaluating their open-ended short answers, we also investigated the students’ web search behavior and the quality of the websites they visited and used during this assessment. We analyzed both the number and type of websites as well as the quality of the information these websites provide. Finally, we investigated to what extent students’ web search behavior as well as the quality of the used website contents are related to higher task performance. To investigate this question, we used five computer-based performance tasks and asked 160 students from two German universities to perform a time-restricted open web search to respond to the open-ended questions presented in the tasks. The written responses were evaluated by two independent human raters. To analyze the students’ browsing history, we developed a coding manual and conducted a quantitative content analysis for a subsample of 50 students. The number of visited webpages per participant per task ranged from 1 to 9. Concerning the type of website, the participants relied especially on established news sites and Wikipedia. For instance, we found that the number of visited websites and the critical discussion of sources provided on the websites correlated positively with students’ scores. The identified relationships between students’ web search behavior, their performance in the CORA tasks, and the qualitative website characteristics are presented and critically discussed in terms of limitations of this study and implications for further research.
Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.