54 datasets found
  1. Website Statistics

    • data.wu.ac.at
    • data.europa.eu
    csv, pdf
    Updated Jun 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2018). Website Statistics [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/M2ZkZDBjOTUtMzNhYi00YWRjLWI1OWMtZmUzMzA5NjM0ZTdk
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jun 11, 2018
    Dataset provided by
    Lincolnshire County Councilhttp://www.lincolnshire.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.

    • Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.

    • Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.

    • Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.

    • Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.

      Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.

    These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.

  2. Total global visitor traffic to Google.com 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total global visitor traffic to Google.com 2024 [Dataset]. https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023 - Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.

  3. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Moran, Madeline
    Homan, Sophia
    Ferrell, Nathan
    Soni, Shreena
    Chan-Tin, Eric
    Honig, Joshua
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  4. D

    Website Analytics

    • data.nola.gov
    • gimi9.com
    • +4more
    csv, xlsx, xml
    Updated Feb 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Information Technology and Innovation Web Team (2017). Website Analytics [Dataset]. https://data.nola.gov/City-Administration/Website-Analytics/62d3-pst8
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Feb 2, 2017
    Dataset authored and provided by
    Information Technology and Innovation Web Team
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data about nola.gov provides a window into how people are interacting with the the City of New Orleans online. The data comes from a unified Google Analytics account for New Orleans. We do not track individuals and we anonymize the IP addresses of all visitors.

  5. d

    Website Analytics

    • catalog.data.gov
    • data.somervillema.gov
    • +1more
    Updated Feb 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.somervillema.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/somerville-analytics
    Explore at:
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    data.somervillema.gov
    Description

    Contains view count data for the top 20 pages each day on the Somerville MA city website dating back to 2020. Data is used in the City's dashboard which can be found at https://www.somervilledata.farm/.

  6. Z

    Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values)

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Webb, Geoff (2021). Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3892918
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset provided by
    Godahewa, Rakshitha
    Hyndman, Rob
    Bergmeir, Christoph
    Webb, Geoff
    Montero-Manso, Pablo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.

    The original dataset contains missing values. They have been simply replaced by zeros.

  7. bestbuy.com Website Traffic, Ranking, Analytics [June 2025]

    • semrush.com
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). bestbuy.com Website Traffic, Ranking, Analytics [June 2025] [Dataset]. https://www.semrush.com/website/bestbuy.com/overview/
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Jul 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    bestbuy.com is ranked #84 in US with 105.32M Traffic. Categories: Retail. Learn more about website traffic, market share, and more!

  8. C

    City Website Analytics

    • data.ccrpc.org
    csv, json, rdf, xml
    Updated Aug 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Urbana (2022). City Website Analytics [Dataset]. https://data.ccrpc.org/am/dataset/city-website-analytics
    Explore at:
    rdf, xml, json, csvAvailable download formats
    Dataset updated
    Aug 3, 2022
    Dataset provided by
    data.urbanaillinois.us
    Authors
    City of Urbana
    Description

    Information about pages on the City's website including their age and their Google Analytics data (everything from "PageViews" and to the right). If the Google Analytics fields are empty, the page hasn't been visited recently at all.

  9. Website statistics—Health and wellbeing

    • data.qld.gov.au
    • researchdata.edu.au
    • +1more
    csv
    Updated Apr 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Communities, Housing and Digital Economy (2021). Website statistics—Health and wellbeing [Dataset]. https://www.data.qld.gov.au/dataset/website-statistics-health-and-wellbeing
    Explore at:
    csv(11 KiB), csv(12.5 KiB), csv(11.5 KiB), csv(12 KiB), csv(13 KiB), csv(10 KiB), csv(10.5 KiB), csv(13.5 KiB), csv(15 KiB)Available download formats
    Dataset updated
    Apr 24, 2021
    Dataset provided by
    Department of Communities, Housing and Digital Economyhttp://housing.qld.gov.au/
    Authors
    Communities, Housing and Digital Economy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—Health and wellbeing franchise. Source: Google Analytics

  10. ebay.com total website traffic in 2024, by device

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). ebay.com total website traffic in 2024, by device [Dataset]. https://www.statista.com/statistics/1333492/ebay-website-traffic-total-device/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2024 - Jul 2024
    Area covered
    Worldwide
    Description

    From February to July 2024, February was the month that had the most website traffic to ebay.com. The consumer-to-consumer (C2C) e-commerce website reached a total of over *** million visits in that month, with the majority being from mobile devices. Popularity on multiple fronts Although eBay is popular on mobile devices, monthly downloads of its mobile app have been trending in the wrong direction since peaking in June 2020 at **** million. Still, in April 2023, ebay.com was the second most popular e-commerce and shopping website worldwide, accounting for more than ***** percent of visits to sites in this category. Big numbers declining In the second quarter of 2023, eBay’s gross merchandise volume (GMV) amounted to nearly **** billion U.S. dollars. That is no small number, but is only a small increase compared to the lowest GMV recorded by the company since the first quarter of 2020 - **** billion U.S. dollars in the third quarter of 2022 - and that’s not the only figure on the decline for eBay. The e-commerce platform had approximately *** million active buyers in the second quarter of 2022, and a year later that number was down *** percent to *** million.

  11. Unleashed website statistics - Dataset - data.sa.gov.au

    • data.sa.gov.au
    Updated Jun 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sa.gov.au (2016). Unleashed website statistics - Dataset - data.sa.gov.au [Dataset]. https://data.sa.gov.au/data/dataset/unleashed-website-statistics
    Explore at:
    Dataset updated
    Jun 29, 2016
    Dataset provided by
    Government of South Australiahttp://sa.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Australia
    Description

    This dataset contains statistics related to the Unleashed website (http://uladl.com). Unleashed is an open data competition, an initiative of the Office for Digital Government, Department of the Premier and Cabinet. The data is used to monitor the level of engagement activity with the audience, and make the communication effective in regards to the event.

  12. Website statistics—Education and training

    • data.qld.gov.au
    • researchdata.edu.au
    • +1more
    csv
    Updated Apr 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Communities, Housing and Digital Economy (2021). Website statistics—Education and training [Dataset]. https://www.data.qld.gov.au/dataset/website-statistics-education-and-training
    Explore at:
    csv(8.5 KiB), csv(11.5 KiB), csv(9.5 KiB), csv(9 KiB), csv(8 KiB), csv(10 KiB), csv(10.5 KiB)Available download formats
    Dataset updated
    Apr 24, 2021
    Dataset provided by
    Department of Communities, Housing and Digital Economyhttp://housing.qld.gov.au/
    Authors
    Communities, Housing and Digital Economy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—Education and training franchise. Source: Google Analytics

  13. d

    Website statistics—Seniors

    • data.gov.au
    • data.qld.gov.au
    • +2more
    csv
    Updated Apr 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Communities, Housing and Digital Economy (2021). Website statistics—Seniors [Dataset]. https://data.gov.au/dataset/ds-qld-90534a84-ff29-440e-af92-53161cb054f8
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 23, 2021
    Dataset provided by
    Communities, Housing and Digital Economy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—Seniors franchise. Source: Google Analytics Monthly statistics for pages viewed by visitors to the Queensland Government website—Seniors franchise. Source: Google Analytics

  14. d

    Global Web Data | Web Scraping Data | Job Postings Data | Source: Company...

    • datarade.ai
    .json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PredictLeads, Global Web Data | Web Scraping Data | Job Postings Data | Source: Company Website | 214M+ Records [Dataset]. https://datarade.ai/data-products/predictleads-web-data-web-scraping-data-job-postings-dat-predictleads
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    PredictLeads
    Area covered
    El Salvador, Comoros, French Guiana, Bosnia and Herzegovina, Bonaire, Virgin Islands (British), Northern Mariana Islands, Kuwait, Guadeloupe, Kosovo
    Description

    PredictLeads Job Openings Data provides high-quality hiring insights sourced directly from company websites - not job boards. Using advanced web scraping technology, our dataset offers real-time access to job trends, salaries, and skills demand, making it a valuable resource for B2B sales, recruiting, investment analysis, and competitive intelligence.

    Key Features:

    ✅214M+ Job Postings Tracked – Data sourced from 92 Million company websites worldwide. ✅7,1M+ Active Job Openings – Updated in real-time to reflect hiring demand. ✅Salary & Compensation Insights – Extract salary ranges, contract types, and job seniority levels. ✅Technology & Skill Tracking – Identify emerging tech trends and industry demands. ✅Company Data Enrichment – Link job postings to employer domains, firmographics, and growth signals. ✅Web Scraping Precision – Directly sourced from employer websites for unmatched accuracy.

    Primary Attributes:

    • id (string, UUID) – Unique identifier for the job posting.
    • type (string, constant: "job_opening") – Object type.
    • title (string) – Job title.
    • description (string) – Full job description, extracted from the job listing.
    • url (string, URL) – Direct link to the job posting.
    • first_seen_at – Timestamp when the job was first detected.
    • last_seen_at – Timestamp when the job was last detected.
    • last_processed_at – Timestamp when the job data was last processed.

    Job Metadata:

    • contract_types (array of strings) – Type of employment (e.g., "full time", "part time", "contract").
    • categories (array of strings) – Job categories (e.g., "engineering", "marketing").
    • seniority (string) – Seniority level of the job (e.g., "manager", "non_manager").
    • status (string) – Job status (e.g., "open", "closed").
    • language (string) – Language of the job posting.
    • location (string) – Full location details as listed in the job description.
    • Location Data (location_data) (array of objects)
    • city (string, nullable) – City where the job is located.
    • state (string, nullable) – State or region of the job location.
    • zip_code (string, nullable) – Postal/ZIP code.
    • country (string, nullable) – Country where the job is located.
    • region (string, nullable) – Broader geographical region.
    • continent (string, nullable) – Continent name.
    • fuzzy_match (boolean) – Indicates whether the location was inferred.

    Salary Data (salary_data)

    • salary (string) – Salary range extracted from the job listing.
    • salary_low (float, nullable) – Minimum salary in original currency.
    • salary_high (float, nullable) – Maximum salary in original currency.
    • salary_currency (string, nullable) – Currency of the salary (e.g., "USD", "EUR").
    • salary_low_usd (float, nullable) – Converted minimum salary in USD.
    • salary_high_usd (float, nullable) – Converted maximum salary in USD.
    • salary_time_unit (string, nullable) – Time unit for the salary (e.g., "year", "month", "hour").

    Occupational Data (onet_data) (object, nullable)

    • code (string, nullable) – ONET occupation code.
    • family (string, nullable) – Broad occupational family (e.g., "Computer and Mathematical").
    • occupation_name (string, nullable) – Official ONET occupation title.

    Additional Attributes:

    • tags (array of strings, nullable) – Extracted skills and keywords (e.g., "Python", "JavaScript").

    📌 Trusted by enterprises, recruiters, and investors for high-precision job market insights.

    PredictLeads Dataset: https://docs.predictleads.com/v3/guide/job_openings_dataset

  15. Website statistics—About Queensland and its government

    • data.qld.gov.au
    • researchdata.edu.au
    • +1more
    csv
    Updated Apr 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Communities, Housing and Digital Economy (2021). Website statistics—About Queensland and its government [Dataset]. https://www.data.qld.gov.au/dataset/website-statistics-about-queensland-and-its-government
    Explore at:
    csv(139 KiB), csv(154 KiB), csv(115.5 KiB), csv(112.5 KiB), csv(73.5 KiB), csv(129.5 KiB), csv(67.5 KiB), csv(137.5 KiB), csv(59.5 KiB), csv(95 KiB), csv(64.5 KiB), csv(102 KiB), csv(97.5 KiB), csv(30.5 KiB)Available download formats
    Dataset updated
    Apr 24, 2021
    Dataset provided by
    Department of Communities, Housing and Digital Economyhttp://housing.qld.gov.au/
    Authors
    Communities, Housing and Digital Economy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—About Queensland and its government franchise. Source: Google Analytics

  16. a

    Website Analytics

    • opendata.atlantaregional.com
    Updated Jan 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Johns Creek, GA (2020). Website Analytics [Dataset]. https://opendata.atlantaregional.com/datasets/JohnsCreekGA::website-analytics/explore
    Explore at:
    Dataset updated
    Jan 14, 2020
    Dataset authored and provided by
    City of Johns Creek, GA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This table is an extract of the data collected within Google Analytics for the domain www.JohnsCreekGA.gov.Some data has been parsed to make analysis of web traffic easier to perform and interpret. Data is updated into this hosted table once a month.

  17. d

    Web Scraping Data | Key Customers Domain Name Data | Scanning Logos found on...

    • datarade.ai
    .json
    Updated Jun 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PredictLeads (2024). Web Scraping Data | Key Customers Domain Name Data | Scanning Logos found on Websites | 248M+ Records [Dataset]. https://datarade.ai/data-products/predictleads-web-scraping-data-domain-name-data-business-predictleads
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset authored and provided by
    PredictLeads
    Area covered
    Curaçao, Malaysia, Turkmenistan, Nigeria, Svalbard and Jan Mayen, Colombia, Northern Mariana Islands, Burkina Faso, Benin, Oman
    Description

    PredictLeads Key Customers Data provides essential business intelligence by analyzing company relationships, uncovering vendor partnerships, client connections, and strategic affiliations through advanced web scraping and logo recognition. This dataset captures business interactions directly from company websites, offering valuable insights into market positioning, competitive landscapes, and growth opportunities.

    Use Cases:

    ✅ Account Profiling – Gain a 360-degree customer view by mapping company relationships and partnerships. ✅ Competitive Intelligence – Track vendor-client connections and business affiliations to identify key industry players. ✅ B2B Lead Targeting – Prioritize leads based on their business relationships, improving sales and marketing efficiency. ✅ CRM Data Enrichment – Enhance company records with detailed key customer data, ensuring data accuracy. ✅ Market Research – Identify emerging trends and industry networks to optimize strategic planning.

    Key API Attributes:

    • id (string, UUID) – Unique identifier for the company connection.
    • category (string) – Type of relationship (e.g., vendor, client, partner).
    • source_category (string) – Where the connection was detected (e.g., partner page, case study).
    • source_url (string, URL) – Website where the relationship was found.
    • individual_source_url (string, URL) – Specific page confirming the connection.
    • context (string) – Extracted description of the business relationship (e.g., "Company X - partners with Company Y to enhance payment processing").
    • first_seen_at (ISO 8601 date-time) – Date the connection was first detected.
    • last_seen_at (ISO 8601 date-time) – Most recent confirmation of the relationship.
    • company1 & company2 (objects) – Details of the two connected companies, including:
    • - domain (string) – Company website domain.
    • - company_name (string) – Official company name.
    • - ticker (string, nullable) – Stock ticker, if available.

    📌 PredictLeads Key Customers Data is an indispensable tool for B2B sales, marketing, and market intelligence teams, providing actionable relationship insights to drive targeted outreach, competitor tracking, and strategic decision-making.

    PredictLeads Docs: https://docs.predictleads.com/v3/guide/connections_dataset

  18. Web Analytics Dataset

    • kaggle.com
    Updated Sep 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oluwapelumi Ojo (2023). Web Analytics Dataset [Dataset]. https://www.kaggle.com/datasets/oluwapelumiojo/web-analytics-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Oluwapelumi Ojo
    Description

    This Dataset contains information related to web marketing analytics. it contains information such as sessions, session duration, bounces, time on page, unique page that gives insight into web performance

  19. O

    Corporate Website — Analytics — Top 100 search terms

    • data.qld.gov.au
    • researchdata.edu.au
    html
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brisbane City Council (2025). Corporate Website — Analytics — Top 100 search terms [Dataset]. https://www.data.qld.gov.au/dataset/corporate-website-analytics-top-100-search-terms
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 2, 2025
    Dataset authored and provided by
    Brisbane City Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is available on Brisbane City Council’s open data website – data.brisbane.qld.gov.au. The site provides additional features for viewing and interacting with the data and for downloading the data in various formats.

    Monthly analytics reports for the Brisbane City Council website

    Information regarding the sessions for Brisbane City Council website during the month including search terms used.

  20. r

    Website statistics—Youth

    • researchdata.edu.au
    • data.qld.gov.au
    • +2more
    Updated Jun 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.qld.gov.au (2014). Website statistics—Youth [Dataset]. https://researchdata.edu.au/website-statistics8212youth/660576
    Explore at:
    Dataset updated
    Jun 26, 2014
    Dataset provided by
    data.qld.gov.au
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—Youth franchise. Source: Google Analytics

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lincolnshire County Council (2018). Website Statistics [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/M2ZkZDBjOTUtMzNhYi00YWRjLWI1OWMtZmUzMzA5NjM0ZTdk
Organization logo

Website Statistics

Explore at:
csv, pdfAvailable download formats
Dataset updated
Jun 11, 2018
Dataset provided by
Lincolnshire County Councilhttp://www.lincolnshire.gov.uk/
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.

  • Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.

  • Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.

  • Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.

  • Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.

    Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.

These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.

Search
Clear search
Close search
Google apps
Main menu