Facebook
TwitterAs you might have already heard, after 20+ years of serving the GIS community ArcMap is finally retiring.The desktop role of the ArcGIS system is being replaced by ArcGIS Pro, which is more integrated with other ArcGIS solutions like ArcGIS Online, The Living Atlas, fieldwork and web applications.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contents: This is an ArcGIS Pro zip file that you can download and use for creating map books based on United States National Grid (USNG). It contains a geodatabase, layouts, and tasks designed to teach you how to create a basic map book.Version 1.0.0 Uploaded on May 24th and created with ArcGIS Pro 2.1.3 - Please see the README below before getting started!Updated to 1.1.0 on August 20thUpdated to 1.2.0 on September 7thUpdated to 2.0.0 on October 12thUpdate to 2.1.0 on December 29thBack to 1.2.0 due to breaking changes in the templateBack to 1.0.0 due to breaking changes in the template as of June 11th 2019Updated to 2.1.1 on October 8th 2019Audience: GIS Professionals and new users of ArcGIS Pro who support Public Safety agencies with map books. If you are looking for apps that can be used by any public safety professional, see the USNG Lookup Viewer.Purpose: To teach you how to make a map book with critical infrastructure and a basemap, based on USNG. You NEED to follow the steps in the task and not try to take shortcuts the first time you use this task in order to receive the full benefits. Background: This ArcGIS Pro template is meant to be a starting point for your map book projects and is based on best practices by the USNG National Implementation Center (TUNIC) at Delta State University and is hosted by the NAPSG Foundation. This does not replace previous templates created in ArcMap, but is a new experimental approach to making map books. We will continue to refine this template and work with other organizations to make improvements over time. So please send us your feedback admin@publicsafetygis.org and comments below. Instructions: Download the zip file by clicking on the thumbnail or the Download button.Unzip the file to an appropriate location on your computer (C:\Users\YourUsername\Documents\ArcGIS\Projects is a common location for ArcGIS Pro Projects).Open the USNG Map book Project File (APRX).If the Task is not already open by default, navigate to Catalog > Tasks > and open 'Create a US National Grid Map Book' Follow the instructions! This task will have some automated processes and models that run in the background but you should pay close attention to the instructions so you also learn all of the steps. This will allow you to innovate and customize the template for your own use.FAQsWhat is US National Grid? The US National Grid (USNG) is a point and area reference system that provides for actionable location information in a uniform format. Its use helps achieve consistent situational awareness across all levels of government, disciplines, and threats & hazards – regardless of your role in an incident.One of the key resources NAPSG makes available to support emergency responders is a basic USNG situational awareness application. See the NAPSG Foundation and USNG Center websites for more information.What is an ArcGIS Pro Task? A task is a set of preconfigured steps that guide you and others through a workflow or business process. A task can be used to implement a best-practice workflow, improve the efficiency of a workflow, or create a series of interactive tutorial steps. See "What is a Task?" for more information.Do I need to be proficient in ArcGIS Pro to use this template? We feel that this is a good starting point if you have already taken the ArcGIS Pro QuickStart Tutorials. While the task will automate many steps, you will want to get comfortable with the map layouts and other new features in ArcGIS Pro.Is this template free? This resources is provided at no-cost, but also with no guarantees of quality assurance or support at this time. Can't I just use ArcMap? Ok - here you go. USNG 1:24K Map Template for ArcMapKnown Limitations and BugsZoom To: It appears there may be a bug or limitation with automatically zooming the map to the proper extent, so get comfortable with navigation or zoom to feature via the attribute table.FGDC Compliance: We are seeking feedback from experts in the field to make sure that this meets minimum requirements. At this point in time we do not claim to have any official endorsement of standardization. File Size: Highly detailed basemaps can really add up and contribute to your overall file size, especially over a large area / many pages. Consider making a simple "Basemap" of street centerlines and building footprints.We will do the best we can to address limitations and are very open to feedback!
Facebook
TwitterWalk through this tutorial to get started with using the Sentinel2 Landcover deep learning package in ArcGIS Pro.
Facebook
TwitterData for the tutorial Get started with ArcGIS Pro.Layout template gallery was added to ArcGIS Pro at 2.5. For earlier versions, download and import this layout file.
Facebook
TwitterWalk through this tutorial to get started with using the Road Detection (North America) deep learning package in ArcGIS Pro.
Facebook
TwitterSometimes you just want to thread the needle of plausible cartography and make scientific maps in the most charming homespun manner possible. Here is a video walking through how this style was created using ArcGIS PRo stymbology. Here are a couple frame images if you want to add them atop your ArcGIS Pro layout:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Purpose: This is an ArcGIS Pro template that GIS Specialists can use to identify vulnerable populations and special needs infrastructure most at risk to flooding events.How does it work?Determine and understand the Place Vulnerability (based on Cutter et al. 1997) and the Special Needs Infrastructure for an area of interest based on Special Flood Hazard Zones, Social Vulnerability Index, and the distribution of its Population and Housing units. The final product will be charts of the data distribution and a Hosted Feature Layer. See this Story Map example for a more detailed explanation.This uses the FEMA National Flood Hazard Layer as an input (although you can substitute your own flood hazard data), check availability for your County before beginning the Task: FEMA NFHL ViewerThe solution consists of several tasks that allow you to:Select an area of interest for your Place Vulnerability Analysis. Select a Hazard that may occur within your area of interest.Select the Social Vulnerability Index (SVI) features contained within your area of interest using the CDC’s Social Vulnerability Index (SVI) – 2016 overall SVI layer at the census tract level in the map.Determine and understand the Social Vulnerability Index for the hazard zones identified within you area of interest.Identify the Special Needs Infrastructure features located within the hazard zones identified within you area of interest.Share your data to ArcGIS Online as a Hosted Feature Layer.FIRST STEPS:Create a folder C:\GIS\ if you do not already have this folder created. (This is a suggested step as the ArcGIS Pro Tasks does not appear to keep relative paths)Download the ZIP file.Extract the ZIP file and save it to the C:\GIS\ location on your computer. Open the PlaceVulnerabilityAnalysis.aprx file.Once the Project file (.aprx) opens, we suggest the following setup to easily view the Tasks instructions, the Map and its Contents, and the Databases (.gdb) from the Catalog pane.The following public web map is included as a Template in the ArcGIS Pro solution file: Place Vulnerability Template Web MapNote 1:As this is a beta version, please take note of some pain points:Data input and output locations may need to be manually populated from the related workspaces (.gdb) or the tools may fail to run. Make sure to unzip/extract the file to the C:\GIS\ location on your computer to avoid issues.Switching from one step to the next may not be totally seamless yet.If you are experiencing any issues with the Flood Hazard Zones service provided, or if the data is not available for your area of interest, you can also download your Flood Hazard Zones data from the FEMA Flood Map Service Center. In the search, use the FEMA ID. Once downloaded, save the data in your project folder and use it as an input.Note 2:In this task, the default hazard being used are the National Flood Hazard Zones. If you would like to use a different hazard, you will need to add the new hazard layer to the map and update all query expressions accordingly.For questions, bug reports, or new requirements contact pdoherty@publicsafetygis.org
Facebook
TwitterThis space-time cube contains basic population and housing variables for Public Use Microdata Areas (PUMAs), annually from 2010 to 2023. The variables are from the American Community Survey (ACS) 1-year estimates.A space-time cube is a powerful data structure used to visualize and analyze spatio-temporal data in ArcGIS Pro. Some examples of what you can do with this space-time cube: Create a compelling three-dimensional visualization of homeownership rate through timeFind emerging hot spots of specific race or Hispanic origin groupsIdentify change points of vacant housing unitsForecast future population valuesTo access this space-time cube, click Download, then unzip the downloaded folder. The folder contains a space-time cube (.nc), a file geodatabase (.gdb) containing the PUMA boundaries, and a csv file (.csv) describing the ACS variables in the space-time cube.To view a short tutorial on getting started with this space-time cube, read this blog article. To learn more about how to create and work with space-time cubes in ArcGIS Pro, view the learning path.placeholderSpace Time Cube ContentsSpatial unit and extent: 2020 vintage Public Use Microdata Areas (PUMA) boundaries for the entire United States, Puerto Rico, and Guam. Downloaded from US Census TIGER geodatabases National Sub-State Geography Database, with water and coastlines erased using 2023 500k TIGER Cartographic Boundary Shapefiles. Temporal interval and extent: one year interval, between 2010 and 2023 .Data source: ACS 1-year estimates downloaded from data.census.gov for each year between 2010 and 2023 (except 2020). Table(s) B01001, B03002, B05003, B05011, B19049, B25002, B25003, B25058, B25077.Variables: includes 32 variables on the following themes: population, race and Hispanic origin, foreign-born, housing occupancy, and housing tenure. To view a full listing of the variables, consult the .csv file contained within the downloaded folder.Processing Notes and Usage Tips The space-time cube contains variables that are directly sources from ACS, plus variables that have been calculated using ACS variables. The calculated variables can be identified by the “_calc_” stub in the field name. The spreadsheet contained within the downloaded folder provides more information on each variable source and calculation. It also contains field aliases, which can optionally be used to add aliases to the space-time cube layer or any other feature classes which are derived from the space-time cube (see blog article for information on how to do this). The field aliases were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. The ACS did not publish 1 year estimates for 2020. The variable values for this year were imputed using the temporal trend method of the Create Space Time Cube from Defined Locations tool, which uses the Interpolated Univariate Spline method from the SciPy Interpolation package. This can introduce some unexpected artifacts in the values for this year, for example: count statistics may include decimal places or may become negative, and variables that should sum together to reach the total of another variable may not. Therefore it is advised to take caution when making any conclusions from analysis which are focused around this year. The PUMA boundaries change after each decennial census. For the time series of this space-time cube, there was a boundary change between 2011 and 2012 (from the 2000 census to 2010), and another between 2021 and 2022 (from the 2010 census to 2020). Therefore, apportionment was required for all years between 2010 and 2021 to be able to accurately create a time series based on the 2020 PUMA geographies. A weighted apportionment approach was used, applying either population or housing weights depending on the variable. Apportionment enables us to create longer time-series or time-series which are more current, however it also adds an additional source of error to the ACS estimates. A version of this space-time cube without apportionment, for 2012 to 2021, is provided at LINK TO OTHER CUBE. ACS update the population controls after every decennial census, which can sometimes cause slight shifts in values. For this space-time cube, these happened between from 2011 and 2012, and 2021 and 2022. Therefore it is advised to take caution when making any conclusions from analysis which are focused around these years. A version of this space-time cube without these effects, for 2012 to 2021, is provided at LINK TO OTHER CUBE. In order to have access to the latest functionality, it is recommended to use the most recent version of ArcGIS Pro to work with the space-time cube. In particular, in ArcGIS Pro 3.5, significant enhancements were made to space-time cube visualization workflows. Native space-time cube analysis and visualization is not currently supported in ArcGIS Online. However once visualization or analysis has taken place in ArcGIS Pro, the resulting space-time cube layer can be published as a Web Scene, which can be visualized in Scene Viewer.ACS InformationInformation about the United States Census Bureau's American Community Survey (ACS): About the Survey Geography & ACS Technical Documentation News & UpdatesPlease cite the Census and ACS when using this data.Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Facebook
TwitterSometimes a basic solid color for your map's labels and text just isn't going to cut it. Here is an ArcGIS Pro style with light and dark gradient fills and shadow/glow effects that you can apply to map text via the "Text fill symbol" picker in your label pane. Level up those labels! Make them look touchable. Glassy. Shady. Intriguing.Find a how-to here.Save this style, add it to your ArcGIS Pro project, then use it for any text (including labels).**UPDATE**I've added a symbol that makes text look like is being illuminated from below, casting a shadow upwards and behind. Pretty dramatic if you ask me. Here is an example:Happy Mapping! John Nelson
Facebook
TwitterArcGIS Pro is a different experience. It introduces a project-based file structure, terminology changes, and brand-new tools and capabilities (which you will very likely love once you get used to them). The courses and resources below will clarify the major differences between ArcMap and ArcGIS Pro and help you conquer the learning curve. Goals Understand key ArcGIS Pro terminology. Import map documents, geoprocessing models, and other ArcMap-created items into ArcGIS Pro. Access tools and functionality through the ArcGIS Pro ribbon-based interface.
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThis web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
Facebook
TwitterThe U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2019 along the Florida Reef Tract (FRT) from Miami to Key West within a 939.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Fehr and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in 2016/2017 and 2019 using the methods of Yates and others (2017). Most of the elevation data from the 2016/2017 time period were collected during 2016, so as an abbreviated naming convention, we refer to this time period as 2016. Due to file size limitations, the elevation-change data was divided into five blocks. A seafloor stability threshold was determined for the 2016-2019 FRT elevation-change datasets based on the vertical uncertainty of the 2016 and 2019 digital elevation models (DEMs). Five stability categories (which include, Stable: 0.0 meters (m) to ±0.24 m or 0.0 m to ±0.49 m; Moderately stable: ±0.25 m to ±0.49 m; Moderately unstable: ±0.50 m to ±0.74 m; Mostly unstable: ±0.75 m to ±0.99 m; and Unstable: ±1.00 m to Max/Min elevation change) were created and used to define levels of stability and instability for each elevation-change value (total of 235,153,117 data points at 2-m horizontal resolution) based on the amount of erosion and accretion during the 2016 to 2019 time period. Seafloor-stability point and triangulated irregular network (TIN) surface models were created for each block at five different elevation-change data resolutions (1st order through 5th order) with each resolution becoming increasingly more detailed. The stability models were used to determine the level of seafloor stability at potential areas of interest for coral restoration and 14 habitat types found along the FRT. Stability surface (TIN) models were used for areas defined by specific XY geographic points, while stability point models were used for areas defined by bounding box coordinate locations. This data release includes ArcGIS Pro map packages containing the binned and color-coded stability point and surface (TIN) models, potential coral restoration locations, and habitat files for each block; maps of each stability model; and data tables containing stability and elevation-change data for the potential coral restoration locations and habitat types. Data were collected under Florida Keys National Marine Sanctuary permit FKNMS-2016-068. Coral restoration locations were provided by Mote Marine Laboratory under Special Activity License SAL-18-1724-SCRP.
Facebook
TwitterThis document explains Virginia Geographic Information Network (VGIN) map and feature services and how to work with them in ArcGIS Desktop and ArcGIS Pro. Instructions cover connecting to the server, adding services to a map, and extracting data from feature services. Particular focus is on the provisioning and PSAP boundary polygons used in NG9-1-1 deployment. The steps listed also apply to other VGIN feature services and publicly-facing or shared feature services from other sources.Feature services are supported in ArcGIS Pro. ArcMap support started in version 10.1. If you are working with a version of ArcGIS Desktop 10.0 or older, please contact us at NG911GIS@vdem.virginia.gov for support.Document updated October 2022 to reflect changes to https://vgin.vdem.virginia.gov/Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
Facebook
TwitterTotal file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset consists of nitrogen dioxide, meteorological data, and traffic data from January to June 2019, which were generated taking into account the spatial distribution of the monitoring stations. Using the ArcGIS Pro software, a grid was created (Top -4,486,449.725263 m; Bottom - 4,466,449.725263 m; Left - 434,215.234430 m; Right - 451,215.234430 m) with a cell size having a width and height equal to 1000 m. There are 340 cells in total (20 by 17). Each cell value includes nitrogen dioxide, meteorological, and traffic attributes from assigned stations at a certain time. The cell value without stations was assigned to zero. The generated grid was exported as Comma Separated Values (CSV) files. Overall, 4,344 CSV files were generated every hour during the first six months of 2019. Meteorological data include ultraviolet radiation, wind speed, wind direction, temperature, relative humidity, barometric pressure, solar irradiance, and precipitation, traffic data includes intensity, occupation, load, and average speed. The datasets have an hourly rate. The data were obtained from the Open Data portal of the Madrid City Council. There are 24 air quality monitoring stations, 26 meteorological monitoring stations, and more than 4,000 traffic measurement points (the location of the measurement points was provided on a monthly basis as these points changed monthly).
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Focus on Geodatabases in ArcGIS Pro introduces readers to the geodatabase, the comprehensive information model for representing and managing geographic information across the ArcGIS platform.Sharing best practices for creating and maintaining data integrity, chapter topics include the careful design of a geodatabase schema, building geodatabases that include data integrity rules, populating geodatabases with existing data, working with topologies, editing data using various techniques, building 3D views, and sharing data on the web. Each chapter includes important concepts with hands-on, step-by-step tutorials, sample projects and datasets, 'Your turn' segments with less instruction, study questions for classroom use, and an independent project. Instructor resources are available by request.AUDIENCEProfessional and scholarly.AUTHOR BIODavid W. Allen has been working in the GIS field for over 35 years, the last 30 with the City of Euless, Texas, and has seen many versions of ArcInfo and ArcGIS come along since he started with version 5. He spent 18 years as an adjunct professor at Tarrant County College in Fort Worth, Texas, and now serves as the State Director of Operations for a volunteer emergency response group developing databases and templates. Mr. Allen is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2016).Pub Date: Print: 6/17/2019 Digital: 4/29/2019 Format: PaperbackISBN: Print: 9781589484450 Digital: 9781589484467 Trim: 7.5 x 9.25 in.Price: Print: $59.99 USD Digital: $59.99 USD Pages: 260
Facebook
TwitterAs you might have already heard, after 20+ years of serving the GIS community ArcMap is finally retiring.The desktop role of the ArcGIS system is being replaced by ArcGIS Pro, which is more integrated with other ArcGIS solutions like ArcGIS Online, The Living Atlas, fieldwork and web applications.