Based on the degree of inequality in income distribution measured by the Gini coefficient, Brazil was the most unequal country in Latin America as of 2022. Brazil's Gini coefficient amounted to 52.9. Dominican Republic recorded the lowest Gini coefficient at 38.5, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America.
The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time.
What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 38 and 54 points according to the latest available data from the reporting period 2010-2021. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.
Between 2010 and 2022, Brazil's data on the degree of inequality in wealth distribution based on the Gini coefficient reached 52.9. That year, Brazil was deemed the most unequal country in Latin America. Prior to 2010, wealth distribution in Brazil had shown signs of improvement, with the Gini coefficient decreasing in the previous three reporting periods.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Based on the degree of inequality in wealth distribution measured by the Gini coefficient, income inequality in Latin America and the Caribbean decreased significantly between 2002 and 2012, falling from a record of 52.8 index points to 47. However, from 2012 onwards the index stagnated above 46 points, which implies that inequality remains high in the region. In 2018, Brazil ranked as the Latin American country with the largest income inequality.
The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of zero represents absolute equality, whereas 100 would be the highest possible degree of inequality.
South Africa had the highest inequality in income distribution in 2023 with a Gini score of 63. Its South African neighbor Namibia followed in second. The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households within a country from a perfectly equal distribution. A value of 0 represents absolute equality, a value of 100 absolute inequality. All the 20 most unequal countries in the world were either located in Africa or Latin America & The Caribbean.
This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of 46.5 (0.465) points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about 0.32 in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to 0.47 in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
This data file includes the Gini coefficient calculated for different wealth welfare aggregates constructed for all Luxembourg Wealth Study (LWS) datasets in all waves (as of March 2022). It includes Gini coefficients calculated on: • Disposable Net Worth • Value of Principal residence • Financial Assets
This project sought to renew the ESRC's invaluable financial support to LIS (formerly the Luxembourg Income Study) for a period of five more years. LIS is an independent, non-profit cross-national data archive and research institute located in Luxembourg. LIS relies on financial contributions from national science foundations, other research institutions and consortia, data-providing agencies, and supranational organisations to support data harmonisation and enable free and unlimited data access to researchers in the participating countries and to students world-wide. LIS' primary activity is to make harmonised household microdata available to researchers, thus enabling cross-national, interdisciplinary primary research into socio-economic outcomes and their determinants. Users of the Luxembourg Income Study Database and Luxembourg Wealth Study Database come from countries around the globe, including the UK. LIS has four goals: 1) to harmonise microdatasets from high- and middle-income countries that include data on income, wealth, employment, and demography; 2) to provide a secure method for researchers to query data that would otherwise be unavailable due to country-specific privacy restrictions; 3) to create and maintain a remote-execution system that sends research query results quickly back to users at off-site locations; and 4) to enable, facilitate, promote and conduct crossnational comparative research on the social and economic wellbeing of populations across countries. LIS contains the Luxembourg Income Study (LIS) Database, which includes income data, and the Luxembourg Wealth Study (LWS) Database, which focuses on wealth data. LIS currently includes microdata from 46 countries in Europe, the Americas, Africa, Asia and Australasia. LIS contains over 250 datasets, organised into eight time "waves," spanning the years 1968 to 2011. Since 2007, seventeen more countries have been added to LIS, including the BRICS countries (Brazil, Russia, India, China, South Africa), Japan, South Korea and a number of other Latin American countries. LWS contains 20 wealth datasets from 12 countries, including the UK, and covers the period 1994 to 2007. All told, LIS and LWS datasets together cover 86% of world GDP and 64% of world population. Users submit statistical queries to the microdatabases using a Java-based job submission interface or standard email. The databases are especially valuable for primary research in that they offer access to cross-national data at the micro-level - at the level of households and persons. Users are economists, sociologists, political scientists, and policy analysts, among others, and they employ a range of statistical approaches and methods. LIS also provides extensive documentation - metadata - for both LIS and LWS, concerning technical aspects of the survey data, the harmonisation process, and the social institutions of income and wealth provision in participating countries. In the next five years, for which support is sought, LIS will: - expand LIS, adding Waves IX (2013) and X (2016), and add new middle-income countries; - develop LWS, adding another wave of datasets to existing countries; acquire new wealth datasets for 14 more countries in cooperation with the European Central Bank (based on the Household Finance and Consumption Survey); - create a state-of-the-art metadata search and storage system; - maintain international standards in data security and data infrastructure systems; - provide high-quality harmonised household microdata to researchers around the world; - enable interdisciplinary cross-national social science research covering 45+ countries, including the UK; - aim to broaden its reach and impact in academic and non-academic circles through focused communications strategies and collaborations.
Between 2010 and 2022, Colombia's data on the degree of inequality in wealth distribution based on the Gini coefficient reached 51.5. That year, the country was deemed as one of the most unequal countries in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Between 2010 and 2022, Chile's data on the degree of inequality in income distribution based on the Gini coefficient reached 44.9. Although having one of the highest human development indexes in Latin America, Chile's Gini coefficient was still higher than countries like Haiti and El Salvador. Nevertheless, income distribution in this South American country has shown signs of improvement, with the Gini coefficient decreasing in recent periods.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Between 2010 and 2022, Argentina's data on the degree of income in wealth distribution based on the Gini coefficient reached 42. Compared to the previous reported period, this coefficient improved slightly. During that period, Argentina was deemed as one of the most equal countries in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.
Between 2010 and 2022, Panama's data on the degree of inequality in income distribution based on the Gini coefficient totaled 50.9. This coefficient represents a deterioration compared to last year. Panama was deemed as the third most unequal country in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global descriptive statistics of variables and constructed indices.
Between 2010 and 2022, Honduras' data on the degree of inequality in income distribution based on the Gini coefficient reached 48.2. That year, Honduras was deemed as one of themost unequal countries in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
This data file includes the Inequality and Poverty Key Figures (as of March 2022), constructed for all Luxembourg Income Study (LIS) Study datasets in all waves. It includes multiple national-level measures: • on inequality measures: Gini, Atkinson coefficients, and percentile ratios • on relative poverty rates for various demographic groups • median and mean of disposable household income
This project sought to renew the ESRC's invaluable financial support to LIS (formerly the Luxembourg Income Study) for a period of five more years. LIS is an independent, non-profit cross-national data archive and research institute located in Luxembourg. LIS relies on financial contributions from national science foundations, other research institutions and consortia, data-providing agencies, and supranational organisations to support data harmonisation and enable free and unlimited data access to researchers in the participating countries and to students world-wide. LIS' primary activity is to make harmonised household microdata available to researchers, thus enabling cross-national, interdisciplinary primary research into socio-economic outcomes and their determinants. Users of the Luxembourg Income Study Database and Luxembourg Wealth Study Database come from countries around the globe, including the UK. LIS has four goals: 1) to harmonise microdatasets from high- and middle-income countries that include data on income, wealth, employment, and demography; 2) to provide a secure method for researchers to query data that would otherwise be unavailable due to country-specific privacy restrictions; 3) to create and maintain a remote-execution system that sends research query results quickly back to users at off-site locations; and 4) to enable, facilitate, promote and conduct crossnational comparative research on the social and economic wellbeing of populations across countries. LIS contains the Luxembourg Income Study (LIS) Database, which includes income data, and the Luxembourg Wealth Study (LWS) Database, which focuses on wealth data. LIS currently includes microdata from 46 countries in Europe, the Americas, Africa, Asia and Australasia. LIS contains over 250 datasets, organised into eight time "waves," spanning the years 1968 to 2011. Since 2007, seventeen more countries have been added to LIS, including the BRICS countries (Brazil, Russia, India, China, South Africa), Japan, South Korea and a number of other Latin American countries. LWS contains 20 wealth datasets from 12 countries, including the UK, and covers the period 1994 to 2007. All told, LIS and LWS datasets together cover 86% of world GDP and 64% of world population. Users submit statistical queries to the microdatabases using a Java-based job submission interface or standard email. The databases are especially valuable for primary research in that they offer access to cross-national data at the micro-level - at the level of households and persons. Users are economists, sociologists, political scientists, and policy analysts, among others, and they employ a range of statistical approaches and methods. LIS also provides extensive documentation - metadata - for both LIS and LWS, concerning technical aspects of the survey data, the harmonisation process, and the social institutions of income and wealth provision in participating countries. In the next five years, for which support is sought, LIS will: - expand LIS, adding Waves IX (2013) and X (2016), and add new middle-income countries; - develop LWS, adding another wave of datasets to existing countries; acquire new wealth datasets for 14 more countries in cooperation with the European Central Bank (based on the Household Finance and Consumption Survey); - create a state-of-the-art metadata search and storage system; - maintain international standards in data security and data infrastructure systems; - provide high-quality harmonised household microdata to researchers around the world; - enable interdisciplinary cross-national social science research covering 45+ countries, including the UK; - aim to broaden its reach and impact in academic and non-academic circles through focused communications strategies and collaborations.
Comparing the 130 selected regions regarding the gini index , South Africa is leading the ranking (0.63 points) and is followed by Namibia with 0.58 points. At the other end of the spectrum is Slovakia with 0.23 points, indicating a difference of 0.4 points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from 0 (=total equality of incomes) to one (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
As an indicator for the analysis for income inequality. In 2020, the Gini Index recorded in the Colombian capital reached its highest level of inequality since at least 2012 with a 0.56 coefficient, being 0 perfect equality. This comes as no surprise, because Colombia ranked as the second most unequal country in Latin America.
Between 2010 and 2022, Haiti's data on the degree of inequality in income distribution based on the Gini coefficient reached 41.1, same as the previous period. Although having one of the lowest human development indexes in Latin America, Haiti's Gini coefficient was deemed as one of the most equal countries in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Between 2010 and 2022, El Salvador's data on the degree of inequality in wealth distribution based on the Gini coefficient reached 38.8. El Salvador's was deemed as the most equal country in Latin America when it comes to income distribution.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Between 2010 and 2022, the Dominican Republic's data on the degree of inequality in income distribution based on the Gini coefficient totaled 38.5. This coefficient represents an improvement compared to the last previous periods. The Dominican Republic was one of the most equal countries in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Guatemala's data on the degree of inequality in income distribution based on the Gini coefficient reached 48.3 between 2010 and 2022, the same amount of the previous period. That year, the country was deemed as one of the most unequal countries in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Based on the degree of inequality in income distribution measured by the Gini coefficient, Brazil was the most unequal country in Latin America as of 2022. Brazil's Gini coefficient amounted to 52.9. Dominican Republic recorded the lowest Gini coefficient at 38.5, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America.
The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time.
What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 38 and 54 points according to the latest available data from the reporting period 2010-2021. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.