Facebook
TwitterComparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2023 about gini, indexes, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gini index measures economic inequality in a country. Specifically, it is the extent to which the distribution of income (or, in some cases, consumption expenditure) deviates from a perfectly equal distribution among individuals or households within an economy.
Facebook
TwitterIn 2024, the Gini coefficient of household income distribution in the United States was 0.49. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. Within the United States, the District of Columbia and the state of New York had the largest income gap between earners by Gini Index of about 0.52. Utah, on the other hand, had the greatest income equality with a score of 0.42. The Gini coefficient around the world The Gini coefficient is also an effective measure of income inequality around the world. In 2024, income inequality was highest in South Africa. Slovakia and Slovenia were on the other end of the scale, with high levels of income equality.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 52.000 % in 2022. This records a decrease from the previous number of 52.900 % for 2021. Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 56.400 % from Dec 1981 (Median) to 2022, with 38 observations. The data reached an all-time high of 63.300 % in 1989 and a record low of 48.900 % in 2020. Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Brazil – Table BR.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterBased on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chile CL: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 43.000 % in 2022. This records a decrease from the previous number of 47.000 % for 2020. Chile CL: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 49.600 % from Dec 1987 (Median) to 2022, with 16 observations. The data reached an all-time high of 57.200 % in 1990 and a record low of 43.000 % in 2022. Chile CL: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chile – Table CL.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bangladesh BD: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 33.400 % in 2022. This records an increase from the previous number of 32.400 % for 2016. Bangladesh BD: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 32.250 % from Dec 1983 (Median) to 2022, with 10 observations. The data reached an all-time high of 33.400 % in 2022 and a record low of 25.900 % in 1983. Bangladesh BD: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bangladesh – Table BD.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterSouth Africa had the highest inequality in income distribution in 2024, with a Gini score of **. Its South African neighbor, Namibia, followed in second. The Gini coefficient measures the deviation of income (or consumption) distribution among individuals or households within a country from a perfectly equal distribution. A value of 0 represents absolute equality, and a value of 100 represents absolute inequality. All the 20 most unequal countries in the world were either located in Africa or Latin America & The Caribbean.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Czech Republic CZ: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 26.200 % in 2021. This stayed constant from the previous number of 26.200 % for 2020. Czech Republic CZ: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 26.200 % from Dec 1992 (Median) to 2021, with 22 observations. The data reached an all-time high of 27.500 % in 2004 and a record low of 20.700 % in 1992. Czech Republic CZ: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Czech Republic – Table CZ.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Gini Ratio of Families by Race of Householder, All Races (GINIALLRF) from 1947 to 2024 about gini, households, income, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing U.K. income inequality - gini coefficient by year from N/A to N/A.
Facebook
TwitterThis dataset contains tables that match an estimated Gini coefficient to a specific geographic region (either census tract, county, or state) from 2010 to 2018. The 1-year estimates are produced by the American Community Survey (ACS).
*The passage below comes from the US Census website:*
GINI INDEX OF INCOME INEQUALITYSurvey/Program: American Community SurveyUniverse: HouseholdsYear: 2018Estimates: 1-YearTable ID: B19083
Source: U.S. Census Bureau, 2018 American Community Survey 1-Year Estimates Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation ). The effect of nonsampling error is not represented in these tables. While the 2018 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities. Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization. Explanation of Symbols: Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.
Facebook
TwitterGINI Index Data consists of information based on primary household survey data obtained from government statistical agencies and World Bank country departments. In economics, the GINI index (sometimes expressed as a GINI ratio, GINI coefficient or a normalized GINI index) is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measure of inequality.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for GINI Index for India (SIPOVGINIIND) from 1977 to 2022 about gini, India, and indexes.
Facebook
TwitterThis dataset provides a gridded subnational datasets for Income inequality (Gini coefficient) at admin 1 level Gross national income (GNI) per capita PPP at admin 1 level The datasets are based on reported subnational admin data and spans three decades from 1990 to 2021. The dataset is presented in details in the following publication. Please cite this paper when using data. Chrisendo D, Niva V, Hoffman R, Sayyar SM, Rocha J, Sandström V, Solt F, Kummu M. 2024. Income inequality has increased for over two-thirds of the global population. Preprint. doi: https://doi.org/10.21203/rs.3.rs-5548291/v1 Code is available at following repositories: Gini coefficient data creation: https://github.com/mattikummu/subnatGini GNI per capita data creation: https://github.com/mattikummu/subnatGNI analyses for the article: https://github.com/mattikummu/gini_gni_analyses The following data is given (formats in brackets) Income inequality (Gini coefficient) at admin 0 level (national) (GeoTIFF, gpkg, csv) Income inequality (Gini coefficient) at admin 1 level (subnational) (GeoTIFF, gpkg, csv) Gross national income (GNI) per capita PPP at admin 0 level (national) (GeoTIFF, gpkg, csv) Gross national income (GNI) per capita PPP at admin 1 level (subnational) (GeoTIFF, gpkg, csv) Slope for Gini coefficient at admin 1 level (GeoTIFF; slope is given also in gpk and csv files) Slope for GNI per capita at admin 1 level (GeoTIFF; slope is given also in gpk and csv files) Input data for the script that was used to generate the Gini coefficient (input_data_gini.zip) Input data for the script that was used to generate the GNI per capita PPP (input_data_GNI.zip) Files are named as followsFormat: raster data (GeoTIFF) starts with rast_*, polygon data (gpkg) with polyg_*, and tabulated with tabulated_*. Admin levels: adm0 for admin 0 level, adm1 for admin 1 levelProduct type: _gini_disp_ for gini coefficient based on disposable income _gni_perCapita_ for GNI per capita PPP Metadata Grids Resolution: 5 arc-min (0.083333333 degrees) Spatial extent: Lon: -180, 180; -90, 90 (xmin, xmax, ymin, ymax) Coordinate ref system: EPSG:4326 - WGS 84 Format: Multiband geotiff; one band for each year over 1990-2021 Unit: no unit for Gini coefficient and PPP USD in 2017 international dollars for GNI per capita Geospatial polygon (gpkg) files: Spatial extent: -180, 180; -90, 83.67 (xmin, xmax, ymin, ymax) Temporal extent: annual over 1990-2021 Coordinate ref system: EPSG:4326 - WGS 84 Format: gkpk Unit: no unit for Gini coefficient and PPP USD in 2017 international dollars for GNI per capita
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing OECD members income inequality - gini coefficient by year from N/A to N/A.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing Jamaica income inequality - gini coefficient by year from N/A to N/A.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing China income inequality - gini coefficient by year from N/A to N/A.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.
The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.
AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.
The EU-SILC instrument provides two types of data:
EU-SILC collects:
The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).
The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.
In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.
Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).
([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.
Facebook
TwitterComparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).