10 datasets found
  1. f

    Contains data collected for this study.

    • figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melissa Ann Reisland; Joanna E. Lambert (2023). Contains data collected for this study. [Dataset]. http://doi.org/10.1371/journal.pone.0146891.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Melissa Ann Reisland; Joanna E. Lambert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Only data in the tab labeled scan with accuracy BC were used in the analyses. (XLSX)

  2. The GeoMAP (v.2022-08) continent-wide detailed geological dataset of...

    • doi.pangaea.de
    • antcat.antarcticanz.govt.nz
    • +1more
    html, tsv
    Updated Mar 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Christopher Cox; Christine S Smith Siddoway; Giovanni Capponi; Tamer Abu-Alam; Jasmine F Mawson; Nicola Dal Seno; Laura Crispini; Jacqueline A Halpin; Adam P Martin; Fraser Morgan; Gary S Wilson; Belinda Smith Lyttle; Samuel Elkind; Paul Morin; Matilda Ballinger; Lauren Bamber; Brett Kitchener; Luigi Lelli; Alexie Millikin; Louis Whitburn; Tristan White; Alex Burton-Johnson; David Elliot; Synnøve Elvevold; John W Goodge; Joachim Jacobs; Eugene Mikhalsky; John Smellie; Phil Scadden (2023). The GeoMAP (v.2022-08) continent-wide detailed geological dataset of Antarctica [Dataset]. http://doi.org/10.1594/PANGAEA.951482
    Explore at:
    html, tsvAvailable download formats
    Dataset updated
    Mar 16, 2023
    Dataset provided by
    PANGAEA
    Authors
    Simon Christopher Cox; Christine S Smith Siddoway; Giovanni Capponi; Tamer Abu-Alam; Jasmine F Mawson; Nicola Dal Seno; Laura Crispini; Jacqueline A Halpin; Adam P Martin; Fraser Morgan; Gary S Wilson; Belinda Smith Lyttle; Samuel Elkind; Paul Morin; Matilda Ballinger; Lauren Bamber; Brett Kitchener; Luigi Lelli; Alexie Millikin; Louis Whitburn; Tristan White; Alex Burton-Johnson; David Elliot; Synnøve Elvevold; John W Goodge; Joachim Jacobs; Eugene Mikhalsky; John Smellie; Phil Scadden
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Binary Object, Binary Object (MD5 Hash), Binary Object (File Size), Binary Object (Media Type)
    Description

    A dataset describing exposed bedrock and surficial geology of Antarctica constructed by the GeoMAP Action Group of SCAR (The Scientific Committee on Antarctic Research) and GNS Science, New Zealand. Legacy geological map data have been captured into a geographic information system (GIS), refining its spatial reliability, harmonising classification, then improving representation of glacial sequences and geomorphology. A total 99,080 polygons have been unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial precision. Geological definition in GeoMAP v.2022-08 is founded on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs international GeoSciML data protocols to provide attribute-rich and queriable data; including bibliographic links to 589 source maps and scientific literature. Data are provided under CC-BY License as zipped ArcGIS geodatabase, QGIS geopackage or GoogleEarth kmz files. GeoMAP is the first detailed geological dataset covering all of Antarctica. GeoMAP depicts 'known geology' of rock exposures rather than 'interpreted' sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation.

  3. f

    Data Sheet 1_Integration of geospatial technology and AHP model for...

    • frontiersin.figshare.com
    • figshare.com
    pdf
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenhom E. Salem; Ayman M. Al Temamy; Tamer S. Abu‐Alam; Mona A. Mesallam; Amr S. Fahil (2025). Data Sheet 1_Integration of geospatial technology and AHP model for assessing groundwater potentiality in Arid Regions: a case study in Wadi Araba Basin, Western Coast of Gulf of Suez, Egypt.pdf [Dataset]. http://doi.org/10.3389/fmars.2025.1670000.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 21, 2025
    Dataset provided by
    Frontiers
    Authors
    Zenhom E. Salem; Ayman M. Al Temamy; Tamer S. Abu‐Alam; Mona A. Mesallam; Amr S. Fahil
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gulf of Suez, Egypt
    Description

    IntroductionIn arid regions such as Wadi Araba, Egypt, water scarcity is a significant challenge, driven by the complex hydrogeological settings and limited field data, all while demand continues to grow for water for domestic, agricultural, and industrial needs. Additionally, the basin flows westward into the Gulf of Suez, generating a slight deltaic fan connecting inland recharge movement with coastal sedimentary and hydrological activities.MethodsThe groundwater recharge potential in Wadi Araba was mapped using the Analytic Hierarchy Process (AHP) within a GIS framework, which is the research objective. Using ArcGIS 10.8, ten thematic layers were weighted and combined to create a groundwater potential map that shows how surface, climate, and structure affect it.ResultsThe study revealed that Wadi Araba has three distinct categories of groundwater potential: low (28.45%) in the northern and southern zones, intermediate (56.9%) in the middle and western sections, and high (14.65%) in the northeastern basin near the Gulf of Suez. These patterns match up with changes in slope, soil permeability, rainfall, and the number of structural elements like drainage and lineaments. Finally, ROC -AUC analysis using 13 field-verified locations was used to check the accuracy of the derived zones, and the results indicated that the prediction accuracy was 78.7%. Accordingly, accessible sites are groundwater indicators in this arid area with few wells and springs.DiscussionThis study is the first to use an AHP-GIS-based method to map the potential for groundwater in Wadi Araba, Egypt. The results provide an excellent basis for planning sustainable groundwater use in similar arid regions with little field data.

  4. f

    Validation of results for 2D and 3D noise mapping.

    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pervez Alam; Kafeel Ahmad; Afzal Husain Khan; Nadeem A. Khan; Mohammad Hadi Dehghani (2023). Validation of results for 2D and 3D noise mapping. [Dataset]. http://doi.org/10.1371/journal.pone.0248939.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Pervez Alam; Kafeel Ahmad; Afzal Husain Khan; Nadeem A. Khan; Mohammad Hadi Dehghani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Validation of results for 2D and 3D noise mapping.

  5. Description of noise monitoring stations.

    • plos.figshare.com
    xls
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pervez Alam; Kafeel Ahmad; Afzal Husain Khan; Nadeem A. Khan; Mohammad Hadi Dehghani (2023). Description of noise monitoring stations. [Dataset]. http://doi.org/10.1371/journal.pone.0248939.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Pervez Alam; Kafeel Ahmad; Afzal Husain Khan; Nadeem A. Khan; Mohammad Hadi Dehghani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description of noise monitoring stations.

  6. Noise monitoring location, date and time.

    • plos.figshare.com
    xls
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pervez Alam; Kafeel Ahmad; Afzal Husain Khan; Nadeem A. Khan; Mohammad Hadi Dehghani (2023). Noise monitoring location, date and time. [Dataset]. http://doi.org/10.1371/journal.pone.0248939.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Pervez Alam; Kafeel Ahmad; Afzal Husain Khan; Nadeem A. Khan; Mohammad Hadi Dehghani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Noise monitoring location, date and time.

  7. Statistics of NDVI images.

    • plos.figshare.com
    xls
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Naveed Alam; Zahid Ullah; Bilal Ahmad; Ahmad Ali; Kashmala Syed (2024). Statistics of NDVI images. [Dataset]. http://doi.org/10.1371/journal.pone.0302192.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Naveed Alam; Zahid Ullah; Bilal Ahmad; Ahmad Ali; Kashmala Syed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Human population growth and the accompanying increase in anthropogenic activities pose a significant threat to forest ecosystems by reducing the natural services these ecosystems provide. Malam Jabba, located in the District Swat of Pakistan’s Hindukush-Himalayan temperate zone, is known for its ecotourism, skiing, timber-producing tree species, medicinal plants, and unique biodiversity. However, a large portion of Swat Valley’s population depends on the Malam Jabba forests for timber and fuelwood. This study investigates how deforestation rates have increased in response to the growing human population in Malam Jabba, District Swat. To monitor forest cover changes, we used remote sensing (RS) and geographic information systems (GIS) tools. Vegetation analysis was conducted using the Normalized Difference Vegetation Index (NDVI) based on multi-temporal satellite imagery from 1980, 2000, and 2020. Using a decay model, we calculated the deforestation rate from 1980 to 2020 and projected future rates using MATLAB, based on anticipated population growth. Our results show that over the last two decades, the average annual deforestation rate rose from 0.7% to 1.93%, coinciding with a population increase from 1.2 million to 2.3 million at a growth rate of 9% per year. Projections indicate that the deforestation rate will increase to 2.5% annually over the next 20 years, given the predicted 11.6% yearly population growth. Population growth in District Swat has severely endangered nearby forest ecosystems, and further increases in human activity, such as unsustainable tourism, fuel and timber collection, and urbanization, will likely exacerbate this trend. Based on our findings, we recommend: (i) the implementation of reforestation programs and sustainable forest resource use; (ii) the development of a long-term forest management plan that maintains equilibrium between forest density and population pressure; and (iii) prioritizing areas with extreme human impact for in-situ conservation efforts.

  8. e

    Andmepaketi lihtne allalaadimisteenus (Atom): Orne’i oru mitme ohu...

    • data.europa.eu
    unknown
    Updated Mar 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Andmepaketi lihtne allalaadimisteenus (Atom): Orne’i oru mitme ohu ennetamise kava GIS-andmed [Dataset]. https://data.europa.eu/data/datasets/fr-120066022-srv-2f4474e7-0f1e-40b9-8af6-db5a12779ac2?locale=et
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Mar 5, 2022
    Description

    See andmekogum koosneb regulatiivsete tsoonide kihist, ohukihtidest (merevee allalöömise ohud ja merepinna tase vastavalt lähtestsenaariumidele + 20 cm ja + 60 cm kõrgusele, rannajoone kadumisele) ning 10. augustil 2021 heaks kiidetud Alam-Orne’i oru mitme riski ennetuskava kihtidest (pind, lineaarne või punkt).

  9. e

    Andmepartii kaardi vaatamise teenus (WMS): Orne’i oru mitme ohu ennetamise...

    • data.europa.eu
    unknown
    Updated Mar 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Andmepartii kaardi vaatamise teenus (WMS): Orne’i oru mitme ohu ennetamise kava GIS-andmed [Dataset]. https://data.europa.eu/data/datasets/fr-120066022-srv-2be606d9-e615-4227-aed2-ff6f03ed90b3?locale=et
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Mar 5, 2022
    Description

    See andmekogum koosneb regulatiivsete tsoonide kihist, ohukihtidest (merevee allalöömise ohud ja merepinna tase vastavalt lähtestsenaariumidele + 20 cm ja + 60 cm kõrgusele, rannajoone kadumisele) ning 10. augustil 2021 heaks kiidetud Alam-Orne’i oru mitme riski ennetuskava kihtidest (pind, lineaarne või punkt).

  10. a

    ADMINISTRASI LN 50K TANGERANGKAB 2020

    • putra-dtrb.hub.arcgis.com
    Updated Dec 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dinas Tata Ruang dan Bangunan (2020). ADMINISTRASI LN 50K TANGERANGKAB 2020 [Dataset]. https://putra-dtrb.hub.arcgis.com/items/abdef6267c07488eab580bfb11f39b46
    Explore at:
    Dataset updated
    Dec 29, 2020
    Dataset authored and provided by
    Dinas Tata Ruang dan Bangunan
    Area covered
    Description

    Batas Administrasi Kabupaten Tangerang berdasarkan RTRW tahun 2020Batas Daerah di Darat adalah pembatas wilayah administrasi pemerintahan antar daerah yang merupakan rangkaian titik-titik koordinat yang berada pada permukaan bumi dapat berupa tanda-tanda alam seperti igir/punggung gunung/pegunungan (watershed), median sungai dan/atau unsur buatan di lapangan yang dituangkan dalam bentuk peta.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Melissa Ann Reisland; Joanna E. Lambert (2023). Contains data collected for this study. [Dataset]. http://doi.org/10.1371/journal.pone.0146891.s001

Contains data collected for this study.

Related Article
Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
xlsxAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOS ONE
Authors
Melissa Ann Reisland; Joanna E. Lambert
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Only data in the tab labeled scan with accuracy BC were used in the analyses. (XLSX)

Search
Clear search
Close search
Google apps
Main menu