Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The booming GIS Mapping Tools market is projected to reach $45 billion by 2033, driven by cloud adoption and AI. Explore market trends, key players (Esri, Autodesk, Hexagon), and regional growth in this comprehensive analysis.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! This in-depth analysis reveals key trends, growth drivers, and leading companies shaping the future of spatial data. Explore market size, CAGR, regional insights, and application segments (Geological Exploration, Urban Planning, etc.). Learn how cloud-based solutions are revolutionizing GIS.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the GIS Mapping Software market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.
Facebook
Twitterhttps://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Market Research Intellect's GIS Mapping Software Market Report highlights a valuation of USD 3.2 billion in 2024 and anticipates growth to USD 6.5 billion by 2033, with a CAGR of 8.5% from 2026-2033.Explore insights on demand dynamics, innovation pipelines, and competitive landscapes.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! Explore key trends, growth drivers, and leading companies in this $15 billion industry projected to reach $28 billion by 2033. Learn about cloud-based solutions, regional market shares, and the future of geographic information systems.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the GIS Mapping Tools market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The geographical mapping software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors, including the rising adoption of cloud-based solutions for enhanced accessibility and collaboration, the growing need for precise location data in various applications, and the increasing integration of GIS technology with other analytical tools. Applications such as geological exploration, water conservancy projects, and urban planning are major contributors to market growth, benefiting from the ability to visualize and analyze spatial data efficiently. While the market faces certain restraints, such as the high initial investment costs associated with some software solutions and the need for specialized expertise, these are being mitigated by the emergence of more affordable and user-friendly options, as well as increased training and educational resources. The market is segmented by application (Geological Exploration, Water Conservancy Project, Urban Plan, Others) and type (Cloud Based, Web Based), with cloud-based solutions gaining significant traction due to their scalability and cost-effectiveness. Major players in the market, including Esri, Autodesk, Mapbox, and others, are continuously innovating and introducing new features to cater to the evolving needs of their customers. This competitive landscape ensures continuous improvement in software capabilities and affordability, further propelling market expansion. The geographical distribution of this market is broad, with North America and Europe currently holding significant market shares due to established infrastructure and high adoption rates. However, the Asia-Pacific region is exhibiting particularly rapid growth, driven by increasing urbanization, infrastructure development, and government initiatives promoting the use of GIS technologies. This regional shift indicates significant future growth potential in emerging markets. The forecast period of 2025-2033 suggests continued expansion, with a projected CAGR reflecting the sustained demand across different geographical regions and application areas. While precise figures are unavailable, based on industry trends and available data, a conservative estimate for the current market size would place it in the high hundreds of millions of dollars, with steady and significant growth anticipated.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming geographical mapping software market! This in-depth analysis reveals key trends, growth drivers, regional insights, and leading companies shaping the future of geospatial technology. Learn about market size, CAGR, and top applications in urban planning, geological exploration, and more.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS mapping tools market! Explore market size, growth trends (8% CAGR), key players (Esri, QGIS, ArcGIS), and regional insights. Learn how cloud-based GIS and AI are transforming industries like urban planning and geological exploration. Get the latest data and forecasts for 2025-2033.
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.
Facebook
TwitterThis is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global GIS Mapping Software market size 2025 was XX Million. GIS Mapping Software Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming geographical mapping software market! This comprehensive analysis reveals key trends, growth drivers, and regional market shares, projecting a significant expansion to $14 billion by 2033. Explore leading companies and applications in this dynamic sector.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global mapping software market is experiencing robust growth, driven by increasing demand across various sectors. While precise figures for market size and CAGR are absent from the provided data, a reasonable estimation can be made based on industry trends. Considering the presence of major players like Adobe, Autodesk, and Microsoft, and the consistent advancements in GIS technology and location-based services, a conservative estimate places the 2025 market size at approximately $15 billion USD. Assuming a steady growth trajectory influenced by factors like increasing adoption of cloud-based solutions, the integration of AI and machine learning for enhanced mapping capabilities, and the growing need for precise location data in logistics, urban planning, and environmental monitoring, a Compound Annual Growth Rate (CAGR) of 8-10% over the forecast period (2025-2033) seems plausible. This would project market values significantly higher by 2033. This growth is fueled by several key trends. The increasing availability of high-resolution satellite imagery and other geospatial data provides richer inputs for mapping applications. Furthermore, the rising adoption of mobile devices equipped with GPS technology and the proliferation of location-based services (LBS) are expanding the market's addressable user base. However, challenges remain, such as the high cost of advanced mapping software and the complexities associated with data integration and management. Nevertheless, the overall market outlook remains positive, with continued expansion anticipated across various segments and geographic regions. The competitive landscape is marked by a mix of established players and emerging startups, leading to innovation and the continuous improvement of mapping technologies.
Facebook
TwitterThe Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Geographic Information System (GIS) market is booming, projected to reach $17.5 billion by 2033 with a 5.8% CAGR. Discover key trends, drivers, and regional insights in this comprehensive market analysis, covering major players and applications.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming Sales Mapping System market! Explore key trends, growth drivers, and leading companies shaping this $2.5 billion (2025) industry. Learn how GIS integration, CRM compatibility, and advanced analytics are transforming sales strategies. Get the data-driven insights you need to succeed.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.