Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information. You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
Facebook
TwitterThis project serves as a focal point of capability and expertise for integrating remote sensing, satellite telemetry and GIS. Working collaboratively with other principal investigators, this project applies satellite and software technologies to study spatial and temporal interactions between wildlife populations and their environment. There are three primary objectives: 1) develop optimal structures for wildlife distribution databases with emphasis on satellite tracking data; 2) develop environmental thematic databases with emphasis on Arctic regions; and 3) develop GIS algorithms for integrated data analyses. Commensurate with accelerating advances in remote sensing, satellite telemetry, and geographic information system (GIS) technology, the primary objective of this task is to evaluate and apply these state-of-the-art tools for developing or improving the methodologies used in wildlife and ecosystem research. The need for cost-effective techniques to systematically acquire environmental data for remote or inaccessible areas, and locational data for highly mobile or migratory species, crosses bureau, program and issue boundaries. This is especially true in arctic regions, where numerous fish and wildlife populations often range internationally, across extensive landscapes of tundra, boreal forest, polar sea-ice, and aquatic ecosystems. Remote sensing technologies provide alternatives to traditional sampling methods, which are typically too expensive to implement across large spatial scales or severely compromised by hazardous weather conditions and extended winter darkness. Publications: Douglas, D.C., 2010, Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas: U.S. Geological Survey Open-File Report 2010-1176, 32 p. Belchansky, G. I., D. C. Douglas, and N. G. Platonov (2005), Spatial and temporal variations in the age structure of Arctic sea ice, Geophys. Res. Lett.,32, L18504, doi:10.1029/2005GL023976 Belchanksy, G. I., D. C. Douglas, I. N. Mordvintsev, and N. G. Platonov (2004), Estimating the time of melt onset and freeze onset over Arctic sea-ice area using active and passive microwave data. Remote Sens. Environ., 92 , 21-39. Belchansky, G. I., D. C. Douglas, and N. G. Platonov (2004), Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001, J. Climate, 17 , 67-80. Belchansky, G. I., D. C. Douglas, I. V. Alpatsky, and N. G. Platonov (2004) , Spatial and temporal multiyear sea ice distributions in the Arctic : A neural network analysis of SSM/I data, 1988-2001, J. Geophys. Res. , 109 (C12), doi:10.1029/2004JC002388. Stone, R. S., D. C. Douglas, G. I. Belchansky, S. D. Drobot, and J. Harris (2005), Cause and effect of variations in western Arctic snow and sea ice cover. 8.3, Proc. Am. Meteorol. Soc. 8 th Conf. on Polar Oceanogr. and Meteorol. , San Diego , CA , 9-13 January. Belchansky, G. I., D. C. Douglas, V. A. Eremeev, and N. G. Platonov (2005), Variations in the Arctic's multiyear sea ice cover: A neural network analysis of SMMR-SSM/I data, 1979-2004. Geophys. Res. Lett. Vol. 32, No. 9, L09605, doi:10.1029/2005GL022395. Stone, R. S., D. C. Douglas, G. I. Belchansky, and S. D. Drobot (2005), Polar climate: Arctic sea ice, Pages 39-41 in D. H. Levinson (ed.), State of the Climate in 2004, Bull. Amer. Meterol. Soc., Vol. 86, No. 6, 86 pp. Stone, R. S., D. C. Douglas, G. I. Belchansky, and S. D. Drobot (2005), Correlated declines in western Arctic snow and sea ice cover. Arctic Res. United States, 19:18-25.
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Applications of GIS & Remote Sensing of GIS & Remote Sensing, 8th Semester , Civil Engineering
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Among the various characteristics of the Brazilian territory, one is foremost: the country has the second largest forest reserve on the planet, accounting for approximately 10% of the total recorded global forest formations. In this scenario, seasonally dry tropical forests (SDTF) are the second smallest forest type in Brazil, located predominantly in non-forested biomes, such as the Cerrado and Caatinga. Consequently, correct identification is fundamental to their conservation, which is hampered as SDTF areas are generally classified as other types of vegetation. Therefore, this research aimed to monitor the Land Use and Coverage in 2007 and 2016 in the continuous strip from the North of Minas Gerais to the South of Piauí, to diagnose the current situation of Brazilian deciduous forests and verify the chief agents that affect its deforestation and regeneration. Our findings were that the significant increase in cultivated areas and the spatial mobility of pastures contributed decisively to the changes presented by plant formations. However, these drivers played different roles in the losses/gains. In particular, it was concluded that the changes occurring to deciduous forests are particularly explained by pastured areas. The other vegetation types were equally impacted by this class, but with a more incisive participation of cultivation.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This file provides the raw data of an online survey intended at gathering information regarding remote sensing (RS) and Geographical Information Systems (GIS) for conservation in academic education. The aim was to unfold best practices as well as gaps in teaching methods of remote sensing/GIS, and to help inform how these may be adapted and improved. A total of 73 people answered the survey, which was distributed through closed mailing lists of universities and conservation groups.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data support the paper "A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures " by Irini Soubry, Thuy Doan, Thuan Chu and Xulin Guo 2021 in the journal of "Remote Sensing" by MDPI. It includes the "Search_Effort.csv" list with the keywords and number of studies selected for further examination, the "Potential_Studies.csv" with the post-filtering of suitability and notes related to each study, the "Metadata.csv" with the information collected for each metadata variable per study, and the "ExtractedData.csv" with the information collected for each extracted dta variable per study. More information about the data collection and procedures can be found in the respective manuscript.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, a reasonable estimate based on industry reports and the stated study period (2019-2033) suggests a current market valuation (2025) in the range of $3-5 billion USD. This significant market size is fueled by several key factors. The agricultural sector relies heavily on remote sensing for precision farming, crop monitoring, and yield prediction, significantly contributing to market expansion. Similarly, the water conservancy and forest management sectors utilize satellite imagery and software for resource monitoring, disaster management, and sustainable practices. Government agencies and the public sector increasingly adopt these technologies for urban planning, environmental monitoring, and national security applications. The market's growth is further enhanced by advancements in open-source software, offering cost-effective alternatives and promoting wider adoption. Trends such as cloud-based solutions, improved data processing capabilities, and the integration of artificial intelligence are further accelerating market growth. However, the market faces certain constraints. High initial investment costs for software licenses and specialized hardware can act as a barrier for entry, particularly for smaller businesses and organizations in developing regions. Data security concerns and the need for skilled professionals to interpret the complex data generated also pose challenges. Despite these obstacles, the ongoing development of user-friendly interfaces, coupled with decreasing hardware costs and increasing availability of cloud-based services, is predicted to mitigate these restraints and sustain a healthy compound annual growth rate (CAGR) in the range of 8-12% throughout the forecast period (2025-2033). Segmentation by application (Agriculture, Water Conservancy, Forest Management, Public Sector, Others) and software type (Open Source, Non-Open Source) reveals distinct market dynamics, with the non-open source segment currently holding a larger share due to its advanced capabilities. This trend is expected to continue, though the open-source segment will show considerable growth driven by its affordability and accessibility.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Discover the Remote Sensing Object Segmentation Dataset Perfect for GIS, AI driven environmental studies, and satellite image analysis.
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Spatial Data Analysis of GIS & Remote Sensing, 8th Semester , Civil Engineering
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The remote sensing software market is experiencing robust growth, driven by increasing demand for geospatial data across various sectors. The market, currently estimated at $5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated market value of $12 billion by 2033. This expansion is fueled by several key factors, including the proliferation of high-resolution satellite imagery, advancements in artificial intelligence (AI) and machine learning (ML) for data analysis, and the growing adoption of cloud-based solutions for enhanced accessibility and scalability. Furthermore, the increasing need for precise mapping and monitoring in applications such as precision agriculture, urban planning, environmental monitoring, and disaster management is significantly bolstering market growth. Key players like PCI Geomatics, Hexagon, and Esri are leveraging these trends to develop innovative solutions and expand their market share. However, market growth is not without its challenges. High initial investment costs associated with software acquisition and infrastructure development can pose a barrier to entry for smaller companies. Additionally, the complexity of data analysis and the need for skilled professionals can restrict broader adoption. Nonetheless, the long-term outlook remains positive, with the ongoing integration of remote sensing software into various applications promising sustained growth and increased market penetration across diverse geographical regions. The development of more user-friendly interfaces and the availability of affordable cloud-based options are expected to mitigate some of the current restraints.
Facebook
TwitterThis project will adapt an existing computer model for assessing the suitability of a site for construction of a living shoreline, apply the model to Perdido Bay/Wolf Bay/Ono Island complex in coastal Alabama; Lake Pontchartrain, Louisiana; and Galveston Bay, Texas, and develop an interactive decision support tool that allows for a rapid assessment of a site.
Facebook
TwitterThis data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.
Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).
Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.
The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.
Facebook
Twitter
As per our latest research, the global Geographic Information System (GIS) market size reached USD 12.3 billion in 2024. The industry is experiencing robust expansion, driven by a surging demand for spatial data analytics across diverse sectors. The market is projected to grow at a CAGR of 11.2% from 2025 to 2033, reaching an estimated USD 31.9 billion by 2033. This accelerated growth is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing with GIS solutions, as well as the increasing adoption of location-based services and smart city initiatives worldwide.
One of the primary growth factors fueling the GIS market is the rapid adoption of geospatial analytics in urban planning and infrastructure development. Governments and private enterprises are leveraging GIS to optimize land use, manage resources efficiently, and enhance public services. Urban planners utilize GIS to analyze demographic trends, plan transportation networks, and ensure sustainable development. The integration of GIS with Building Information Modeling (BIM) and real-time data feeds has further amplified its utility in smart city projects, driving demand for sophisticated GIS platforms. The proliferation of IoT devices and sensors has also enabled the collection of high-resolution geospatial data, which is instrumental in developing predictive models for urban growth and disaster management.
Another significant driver of the GIS market is the increasing need for disaster management and risk mitigation. GIS technology plays a pivotal role in monitoring natural disasters such as floods, earthquakes, and wildfires. By providing real-time spatial data, GIS enables authorities to make informed decisions, coordinate response efforts, and allocate resources effectively. The growing frequency and intensity of natural disasters, coupled with heightened awareness about climate change, have compelled governments and humanitarian organizations to invest heavily in advanced GIS solutions. These investments are not only aimed at disaster response but also at long-term resilience planning, thereby expanding the scope and scale of GIS applications.
The expanding application of GIS in the agriculture and utilities sectors is another crucial growth factor. Precision agriculture relies on GIS to analyze soil conditions, monitor crop health, and optimize irrigation practices, ultimately boosting productivity and sustainability. In the utilities sector, GIS is indispensable for asset management, network optimization, and outage response. The integration of GIS with remote sensing technologies and drones has revolutionized data collection and analysis, enabling more accurate and timely decision-making. Moreover, the emergence of cloud-based GIS platforms has democratized access to geospatial data and analytics, empowering small and medium enterprises to harness the power of GIS for operational efficiency and strategic planning.
From a regional perspective, North America continues to dominate the GIS market, supported by substantial investments in smart infrastructure, advanced research capabilities, and a strong presence of leading technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid urbanization, government initiatives for digital transformation, and increasing adoption of GIS in agriculture and disaster management. Europe is also witnessing significant growth, particularly in transportation, environmental monitoring, and public safety applications. The Middle East & Africa and Latin America are gradually catching up, with growing investments in infrastructure development and resource management. This regional diversification is expected to drive innovation and competition in the global GIS market over the forecast period.
The Geographic Information System market is segmented by component into hardware, software, and services, each playing a unique role
Facebook
TwitterTo investigate the feasibility of using satellite-based remote sensing to study habitat use of polar bears {Ursus aritimus), we compared distributions of satellite locations of radio-collared adult female bears to sea ice concentration (percent ice coverage of 25 x 25 km grid cells) in the Bering and Chukchi Seas at intervals of 10-14 days from April 1990 through February 1991. Ice concentrations were calculated from daily images of surface brightness temperatures detected by satellite-based passive microwave imaging {Special Sensor Microwave/Imager [SSM/I]). Limited precision of the satellite imagery and radio-tracking data prevented us from investigating use of ice concentrations <1%, which bears commonly used during late summer. Furthermore, lack of surface-truth data to support the ice classifications and the possibility of geolocation errors in the SSM/I data indicate that our results must be considered with caution. However, our data suggested that habitat use by female polar bears varied during the year. Most bears remained on the ice pack all year, and were widely distributed during winter and spring, when seasonal ice covered much of the Bering and Chukchi Seas. During summer, bears were found most often in areas with
Facebook
TwitterThis data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset used in this study is designed to facilitate the monitoring and detection of Harmful Algal Blooms (HABs) using Synthetic Aperture Radar (SAR) remote sensing and deep learning models. The dataset includes Sentinel-1 SAR C-band (TIF), Sentinel-2 MSI (TIF), and Water indices (TIF) that were utilized as input dataset in the deep learning model. The dataset used in this study originates from external sources and is not the property of the authors. If reused, proper attribution to the original sources is required in accordance with their respective citation guidelines. The authors have modified the dataset for research purposes.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Remote Sensing Interpretation Software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market size, while not explicitly stated, can be reasonably estimated based on the provided information and typical market growth rates for technology sectors. Considering a CAGR (Compound Annual Growth Rate) and the given study period (2019-2033), a conservative estimate for the 2025 market size might fall within the range of $5-7 billion USD. This growth is fueled by several key factors. Firstly, the expanding application of remote sensing in precision agriculture, facilitating optimized resource allocation and improved crop yields, is a significant driver. Secondly, the petroleum and mineral exploration sector leverages remote sensing for efficient resource identification and extraction, contributing substantially to market growth. Furthermore, advancements in cloud-based solutions are enhancing accessibility and scalability, lowering barriers to entry for various users. Government initiatives promoting the use of geospatial technologies in various sectors, particularly in developing economies, are creating significant opportunities. The integration of AI and machine learning in remote sensing interpretation tools is further accelerating market expansion, enabling faster and more accurate analysis. However, certain restraints are present. High initial investment costs associated with acquiring sophisticated software and hardware can limit adoption, especially among smaller companies and organizations. The need for skilled professionals to operate and interpret data effectively poses a challenge. Data security concerns and the potential for inaccuracies resulting from environmental factors or data processing errors also present hurdles. Despite these challenges, the market's future trajectory remains optimistic, particularly with ongoing technological advancements and increasing government and private sector investment driving innovation and accessibility. Segmentation by application (Petroleum and Mineral Exploration, Agriculture and Forestry, Medicine, Military, Meteorological, Research, etc.) and type (Cloud-based, On-Premise) reveals the market's diverse and expanding potential, with significant growth anticipated in cloud-based solutions driven by their scalability and accessibility. The competitive landscape comprises both established players like Hexagon, Microsoft, and IBM, and emerging companies like Sense Time and Geovis Technology, reflecting a dynamic and innovative market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information. You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.