69 datasets found
  1. a

    Vulnerability

    • hub.arcgis.com
    • gis-pdx.opendata.arcgis.com
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Portland, Oregon (2023). Vulnerability [Dataset]. https://hub.arcgis.com/datasets/PDX::vulnerability
    Explore at:
    Dataset updated
    Aug 31, 2023
    Dataset authored and provided by
    City of Portland, Oregon
    Area covered
    Description

    Click here for research on the effects of land use planning and gentrification on Portland’s communities of color and other vulnerable populations. Economic Vulnerability Assessment:This map identifies census tracts in Portland where residents are more vulnerable to changing economic conditions, making resisting displacement more difficult. These areas have residents who are more likely to:Be "housing cost-burdened", meaning they pay 30% or more of their income on housing costs.Belong to communities of color, particularly Black and Indigenous communities.Lack college degrees, andHave Lower Incomes.This dataset provides an update to the vulnerability risk analysis that Dr. Lisa Bates prepared for the Bureau of Planning and Sustainability in 2012.This latest dataset includes the following changes in methodology:Low income households were replaced with a size-adjusted median household income. This helps account for how different household sizes experience living with different incomes.Renter households were replaced with households that are housing cost-burdened (pay 30%+ on housing costs). This acknowledges that homeowners who pay a high percentage of their income on housing can be vulnerable to displacement as well.A new variable, Black and Indigenous population, was added to better incorporate past harms to these communities.The vulnerability score was rescaled from 0 to 100. A score of 60 or greater is considered a vulnerable tract.Data sources: U.S. Census Bureau, 2022 ACS 5-year estimates, Tables B25106, B25010, B03002, B19013, B15002. Prepared Summer 2024 by the Portland Bureau of Planning and Sustainability.Download dataset from City of Portland Open Data siteAbout the Bureau of Planning and SustainabilityThe Portland Bureau of Planning and Sustainability (BPS) develops creative and practical solutions to enhance Portland’s livability, preserve distinctive places and plan for a resilient future.Need more information about this data? Email bpsgis@portlandoregon.gov-- Additional Information: Category: Planning Purpose: Map the areas susceptible to gentrification pressure. Update Frequency: Yearly-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=54141

  2. a

    Where are the most socially vulnerable populations in the U.S.?

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +6more
    Updated Mar 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Where are the most socially vulnerable populations in the U.S.? [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/2c8fdc6267e4439e968837020e7618f3
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Description

    What is Social Vulnerability?Every community must prepare for and respond to hazardous events, whether a natural disaster like a tornado or a disease outbreak, or an anthropogenic event such as a harmful chemical spill. The degree to which a community exhibits certain social conditions, including high poverty, low percentage of vehicle access, or crowded households, among others, may affect that community’s ability to prevent human suffering and financial loss in the event of a disaster. These factors describe a community’s social vulnerability.What is the CDC/ATSDR Social Vulnerability Index?ATSDR’s Geospatial Research, Analysis, & Services Program (GRASP) created the Centers for Disease Control and Prevention and Agency for Toxic Substances and Disease Registry Social Vulnerability Index (hereafter, CDC/ATSDR SVI or SVI) to help public health officials and emergency response planners identify and map the communities that will most likely need support before, during, and after a hazardous event.SVI indicates the relative vulnerability of every U.S. census tract. Census tracts are subdivisions of counties for which the Census collects statistical data. SVI ranks the tracts on 16 social factors, such as unemployment, racial and ethnic minority status, and disability status. Then, SVI further groups the factors into four related themes. Thus, each tract receives a ranking for each Census variable and for each of the four themes as well as an overall ranking.Below, text that describes “tract” methods also refers to county methods.How can the SVI help communities be better prepared for hazardous events?SVI provides specific socially and spatially relevant information to help public health officials and local planners better prepare communities to respond to emergency events such as severe weather, floods, disease outbreaks, or chemical exposure.SVI can be used to:Assess community need during emergency preparedness planning.Estimate the type and quantity of needed supplies such as food, water, medicine, and bedding.Decide the number of emergency personnel required to assist people.Identify areas in need of emergency shelters.Create a plan to evacuate people, accounting for those who have special needs, such as those without vehicles, the elderly, or people who do not speak English well.Identify communities that will need continued support to recover following an emergency or natural disaster.For more detailed methodology and attribute details, please review this document.

  3. l

    Overall SVI - Tracts

    • visionzero.geohub.lacity.org
    • geodata.fnai.org
    • +6more
    Updated Nov 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yale University ArcGIS Online (2020). Overall SVI - Tracts [Dataset]. https://visionzero.geohub.lacity.org/datasets/yalemaps::cdc-social-vulnerability-index-2018-usa-socioeconomic-theme-tracts-copy?layer=2
    Explore at:
    Dataset updated
    Nov 19, 2020
    Dataset authored and provided by
    Yale University ArcGIS Online
    Area covered
    Description

    sde_grasp_svi_2018.sde.SVI2018_US_tract

  4. m

    Climate Ready Boston Social Vulnerability

    • gis.data.mass.gov
    • data.boston.gov
    • +2more
    Updated Sep 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BostonMaps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://gis.data.mass.gov/datasets/boston::climate-ready-boston-social-vulnerability
    Explore at:
    Dataset updated
    Sep 22, 2017
    Dataset authored and provided by
    BostonMaps
    Area covered
    Description

    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood

  5. d

    Community Vulnerability (BCDC 2020)

    • catalog.data.gov
    • data.cnra.ca.gov
    • +6more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2024). Community Vulnerability (BCDC 2020) [Dataset]. https://catalog.data.gov/dataset/community-vulnerability-bcdc-2020-e61b6
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Description

    The San Francisco Bay Conservation and Development Commission Adapting to Rising Tides Program developed a dataset to better understand community vulnerability to current and future flooding due to sea level rise and storm surges. This data has been used in the Adapting To Rising Tides Bay Area Sea Level Rise Vulnerability and Assessment project as well as helping inform the implementation of the BCDC Environmental Justice and Social Equity Bay Plan amendment. The community vulnerability dataset contains four categories of information: 1. Social Vulnerability Indicators: Certain socioeconomic characteristics may reduce ability to prepare for, respond to, or recover from a hazard event. Census block groups with high concentrations (relative to the nine county Bay Area) of these characteristics are flagged as socially vulnerable, with each block group assigned a rank of highest, high, moderate, and low. Data is currently from American Community Survey (ACS) 2018 5-year estimates but is anticipated to be updated as new ACS 5-year estimates become available. 2. Contamination Vulnerability Indicators: The presence of contaminated lands and water raises health and environmental justice concerns, which worsen with flooding and sea level rise. A rank of highest, high, moderate, and lower for the severity of contamination in each block group was calculated using data compiled by CalEPA Office of Environmental Health Hazard Assessment (OEHHA) for use in CalEnviroScreen 3.0. 3. Residential Exposure to Sea Level Rise: Calculated by joining Metropolitan Transportation Commission 2010 residential parcel data with 2017 ART Bay Area Sea Level Rise and Shoreline Analysis data, FEMA 100 and 500 year flood zone data, and San Francisco 100-year precipitation data to generate the number of residential units exposed at each water level summed by block group. This methodology assumes that once a parcel is exposed to any amount of flooding, the entire number of residential units within that parcel are considered impacted. 4. Complementary Community Vulnerability Screening Tools: Many screening approaches exist to characterize disadvantaged or vulnerable communities. Often in the Bay Area, different designations of disadvantaged/vulnerable communities are located in the same area. It is recommended to use the ART approach in combination with other complementary tools and designations. The following are included in this shapefile as fields for cross-referencing: CalEnviroScreen 3.0 total score, Metropolitan Transportation Commission Community of Concern designation, UC Berkeley Displacement and Gentrification Typologies.Data and resources can be accessed at https://www.bcdc.ca.gov/data/community.html. For information about data development and access please review the Community Vulnerability User Guide and BCDC’s Github Repository. For additional descriptions of GIS methods used in ART Bay Area, please see the ART Bay Area Report Appendix: GIS Data and Methods. For more information, please contact GIS@bcdc.ca.gov.

  6. d

    Estimated geospatial and tabular damages and vulnerable population...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated geospatial and tabular damages and vulnerable population distributions resulting from exposure to multiple hazards by the M7.0 HayWired scenario on April 18, 2018, for 17 counties in the San Francisco Bay region, California [Dataset]. https://catalog.data.gov/dataset/estimated-geospatial-and-tabular-damages-and-vulnerable-population-distributions-resulting
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    San Francisco Bay Area, California
    Description

    This data release is comprised of geospatial and tabular data developed for the HayWired communities at risk analysis. The HayWired earthquake scenario is a magnitude 7.0 earthquake hypothesized to occur on the Hayward Fault on April 18, 2018, with an epicenter in the city of Oakland, CA. The following 17 counties are included in this analysis unless otherwise specified: Alameda, Contra Costa, Marin, Merced, Monterey, Napa, Sacramento, San Benito, San Francisco, San Joaquin, San Mateo, Santa Clara, Santa Cruz, Solano, Sonoma, Stanislaus, and Yolo. The vector data are a geospatial representation of building damage based on square footage damage estimates by Hazus occupancy class for developed areas covering all census tracts in 17 counties in and around the San Francisco Bay region in California, for (1) earthquake hazards (ground shaking, landslide, and liquefaction) and (2) all hazards (ground shaking, landslide, liquefaction, and fire) resulting from the HayWired earthquake scenario mainshock. The tabular data cover: (1) damage estimates, by Hazus occupancy class, of square footage, building counts, and households affected by the HayWired earthquake scenario mainshock for all census tracts in 17 counties in and around the San Francisco Bay region in California; (2) potential total population residing in block groups in nine counties in the San Francisco Bay region in California (Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma); (3) a subset of select tables for 17 counties in and around the San Francisco Bay region in California from the U.S. Census Bureau American Community Survey 5-year (2012-2016) estimates at the block group level selected to represent potentially vulnerable populations that may, in the event of a major disaster, leave an area rather than stay; and (4) building and contents damage estimates (in thousands of dollars, 2005 vintage), by Hazus occupancy class, for the HayWired earthquake scenario mainshock for 17 counties in and around the San Francisco Bay region in California. The vector .SHP datasets were developed and intended for use in GIS applications such as ESRI's ArcGIS software suite. The tab-delimited .TXT datasets were developed and intended for use in standalone spreadsheet or database applications (such as Microsoft Excel or Access). Please note that some of these data are not optimized for use in GIS applications (such as ESRI's ArcGIS software suite) as-is--census tracts or counties are repeated (the data are not "one-to-one"), so not all information belonging to a tract or county would necessarily be associated with a single record. Separate preparation is needed in a standalone spreadsheet or database application like Microsoft Excel or Microsoft Access before using these data in a GIS. These data support the following publications: Johnson, L.A., Jones, J.L., Wein, A.M., and Peters, J., 2020, Communities at risk analysis of the HayWired scenario, chaps. U1-U5 of Detweiler, S.T., and Wein, A.M., eds., The HayWired earthquake scenario--Societal consequences: U.S. Geological Survey Scientific Investigations Report 2017-5013, https://doi.org/10.3133/sir20175013.

  7. f

    Socio-environmental vulnerability index: a methodological proposal based on...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernanda Siqueira Malta; Eduarda Marques da Costa; Alessandra Magrini (2023). Socio-environmental vulnerability index: a methodological proposal based on the case of Rio de Janeiro, Brazil [Dataset]. http://doi.org/10.6084/m9.figshare.5720629.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Fernanda Siqueira Malta; Eduarda Marques da Costa; Alessandra Magrini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rio de Janeiro
    Description

    Abstract The term vulnerability has been more frequently used in several studies, striving to better understand the specificities and needs of different population groups. The scope of this study was to identify, characterize and analyze populations in situations of socio-environmental vulnerability in Rio de Janeiro city, consolidating social, economic, environmental, health and public security indicators in a synthesis index – the Socio-Environmental Vulnerability Index. The data sources used were the IBGE-2010 Demographic Census, the Geo-Rio Foundation and the Public Security Institute of the state of Rio de Janeiro. The methodology integrated Multicriteria Decision Analysis into a Geographic Information System. According to our results, the socio-environmental vulnerability in Rio de Janeiro city is aggravated by risk situations and environmental degradation. Those aspects are accentuated by the population density in shantytown areas, where the most disadvantaged strata exist in a process of environmental and urban exclusion. The study makes it possible to locate spatially vulnerable areas, emphasizing the importance of these tools to guide resource allocation, formulation and implementation of more effective public policies.

  8. m

    MA DPH Climate Vulnerability Mapping Tool

    • gis.data.mass.gov
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). MA DPH Climate Vulnerability Mapping Tool [Dataset]. https://gis.data.mass.gov/datasets/ma-dph-climate-vulnerability-mapping-tool
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Massachusetts
    Description

    Certain populations are particularly vulnerable to changing climate effects. The term "vulnerable populations" refers to people or groups that may be more susceptible to the health effects of climate change. Vulnerability to climate change varies across time and location, across communities, and among individuals within communities. People and communities differ in their exposures, their inherent sensitivity, and their capacity to respond to, adapt to and cope with climate change related health impacts.

  9. O

    Social Vulnerability Index

    • data.sccgov.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    application/rdfxml +5
    Updated Jun 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Social Vulnerability Index [Dataset]. https://data.sccgov.org/Health/Social-Vulnerability-Index/8xdv-384u
    Explore at:
    xml, application/rdfxml, csv, tsv, application/rssxml, jsonAvailable download formats
    Dataset updated
    Jun 16, 2021
    Description

    The Social Vulnerability Index (SVI) indicates the relative overall vulnerability of every U.S. Census tract within Santa Clara County based on 14 social factors as developed by the Center for Disease Control. Derived primarily from U.S. Census American Community Survey 5 yr data 2012-2016 in 2018.

  10. Drought and Water Shortage Risk: Small Suppliers and Rural Communities...

    • catalog.data.gov
    • data.cnra.ca.gov
    • +2more
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2024). Drought and Water Shortage Risk: Small Suppliers and Rural Communities (Version 2021) [Dataset]. https://catalog.data.gov/dataset/drought-and-water-shortage-risk-small-suppliers-and-rural-communities-version-2021-f6492
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    Per California Water Code Section 10609.80 (a), DWR has released an update to the indicators analyzed for the rural communities water shortage vulnerability analysis and a new interactive tool to explore the data. This page remains to archive the original dataset, but for more current information, please see the following pages: - https://water.ca.gov/Programs/Water-Use-And-Efficiency/SB-552/SB-552-Tool - https://data.cnra.ca.gov/dataset/water-shortage-vulnerability-technical-methods - https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections - https://data.cnra.ca.gov/dataset/i07-water-shortage-social-vulnerability-blockgroup This dataset is made publicly available pursuant to California Water Code Section 10609.42 which directs the California Department of Water Resources to identify small water suppliers and rural communities that may be at risk of drought and water shortage vulnerability and propose to the Governor and Legislature recommendations and information in support of improving the drought preparedness of small water suppliers and rural communities. As of March 2021, two datasets are offered here for download. The background information, results synthesis, methods and all reports submitted to the legislature are available here: https://water.ca.gov/Programs/Water-Use-And-Efficiency/2018-Water-Conservation-Legislation/County-Drought-Planning Two online interactive dashboards are available here to explore the datasets and findings. https://dwr.maps.arcgis.com/apps/MapSeries/index.html?appid=3353b370f7844f468ca16b8316fa3c7b The following datasets are offered here for download and for those who want to explore the data in tabular format. (1) Small Water Suppliers: In total, 2,419 small water suppliers were examined for their relative risk of drought and water shortage. Of these, 2,244 are community water systems. The remaining 175 systems analyzed are small non-community non-transient water systems that serve schools for which there is available spatial information. This dataset contains the final risk score and individual risk factors for each supplier examined. Spatial boundaries of water suppliers' service areas were used to calculate the extent and severity of each suppliers' exposure to projected climate changes (temperature, wildfire, and sea level rise) and to current environmental conditions and events. The boundaries used to represent service areas are available for download from the California Drinking Water System Area Boundaries, located on the California State Geoportal, which is available online for download at https://gispublic.waterboards.ca.gov/portal/home/item.html?id=fbba842bf134497c9d611ad506ec48cc (2) Rural Communities: In total 4,987 communities, represented by US Census Block Groups, were analyzed for their relative risk of drought and water shortage. Communities with a record of one or more domestic well installed within the past 50 years are included in the analysis. Each community examined received a numeric risk score, which is derived from a set of indicators developed from a stakeholder process. Indicators used to estimate risk represented three key components: (1) the exposure of suppliers and communities to hazardous conditions and events, (2) the physical and social vulnerability of communities to the exposure, and (3) recent history of shortage and drought impacts. The unit of analysis for the rural communities, also referred to as "self-supplied communities" is U.S. Census Block Groups (ACS 2012-2016 Tiger Shapefile). The Census Block Groups do not necessarily represent socially-defined communities, but they do cover areas where population resides. Using this spatial unit for this analysis allows us to access demographic information that is otherwise not available in small geographic units.

  11. Collection of global datasets for the study of floods, droughts and their...

    • zenodo.org
    • explore.openaire.eu
    bin
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre (2020). Collection of global datasets for the study of floods, droughts and their interactions with human societies [Dataset]. http://doi.org/10.5281/zenodo.3608634
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology.

    The collection is a descriptive list, holding the following information for each dataset:

    • Category - as structured in Lindersson et al. (in preparation).
    • Sub-category- as structured in Lindersson et al. (in preparation).
    • Abbreviation - official or as specified in Lindersson et al. (in preparation).
    • Title - full title of dataset.
    • Product(s) - type of product(s) offered by the dataset.
    • Period - time period covered by the dataset, not defined for all datasets.
    • Temporal resolution - not defined for static datasets.
    • Angular spatial resolution - only defined for gridded datasets.
    • Metric spatial resolution - only defined for gridded datasets.
    • Map scale
    • Extent - geographic coverage of dataset given in latitude limits.
    • Description
    • Creating institute(s)
    • Data type - raster, vector or tabular.
    • File format
    • Primary EO type - specifies if the product primarily is based on remote sensing, ground-based data, or a hybrid between remote sensing and ground-based data.
    • Data sources - lists the data sources behind the dataset, to the extent this is feasible.
    • Data sources also in this table - data sources that are also included as datasets in this collection.
    • Intentionally compatible with - defines other datasets in this collection that the dataset is intentinoally compatible with.
    • Citation - dataset reference or credit.
    • Documentation - dataset documentation.
    • Web address - dataset access link.

    NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.

  12. V

    Vulnerability Index Block Group 2021

    • data.virginia.gov
    • data-fairfaxcountygis.opendata.arcgis.com
    • +1more
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fairfax County (2024). Vulnerability Index Block Group 2021 [Dataset]. https://data.virginia.gov/dataset/vulnerability-index-block-group-2021
    Explore at:
    gpkg, html, arcgis geoservices rest api, xlsx, gdb, geojson, csv, zip, txt, kmlAvailable download formats
    Dataset updated
    May 31, 2024
    Dataset provided by
    County of Fairfax
    Authors
    Fairfax County
    Description

    The Vulnerability Index is comprised of scores from the following indicators from the American Community Survey 2017 –2021 data.

    Low-income Occupations (Population in occupations making only 2/3 of the median income) Table S2401

    Low English-Speaking Ability Table B16004

    Low Educational Attainment Table B15003

    Median Household Income Table B19013

    Households without a Vehicle Table B25044

    Population without Health Insurance Table S2701

    Homeownership Table B25003

    Severely Cost-Burdened Renters Table B25070

    Methodology: Calculated percent of each variable included in the index, used natural breaks with 5 classes to assign scores of 1 - 5 for each census tract, with 5 being the most vulnerable. Combined scores of all variables to create the index (no weighting was applied).

    Contact: OneFairfax@fairfaxcounty.gov

    Data Accessibility: Publicly Available

    Update Frequency: Annually

    Last Revision Date: 5/30/2024

    Creation Date: 5/30/2024

    Layer Name: CEXMGR.VULNERABILITY_INDEX_BLOCK_GROUP_2021

  13. b

    Vulnerable Population Index (May 2015) and related demographic data

    • gisdata.baltometro.org
    Updated Feb 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Metropolitan Council (2017). Vulnerable Population Index (May 2015) and related demographic data [Dataset]. https://gisdata.baltometro.org/datasets/7329b679c8734644893228f91c0ab7e7
    Explore at:
    Dataset updated
    Feb 27, 2017
    Dataset authored and provided by
    Baltimore Metropolitan Council
    Area covered
    Description

    The Vulnerable Population Index (VPI) is intended to guide location selection and stakeholder identification for public involvement and inform Title VI and Environmental Justice (EJ) performance measurement. The Baltimore Regional Transportation Board uses data from the US Census Bureau to determine the concentrations of seven sensitive populations for the region and for each census tract. A tract with a concentration of a sensitive population greater than the concentration of the Baltimore region as a whole is considered to be “vulnerable” for the sensitive population. The Vulnerable Population Index (VPI) indicated the number of vulnerable populations for each tract, and thus provides a general indication of the extent to which each tract is vulnerable. The VPI looks at the following variables:Population in Poverty (American Community Survey 2006-2010 5-Year Estimates)Age 75 and up (Census 2010) Non-Hispanic Minority (people who are non-White and non-Hispanic) (Census 2010) Hispanic or Latino Heritage (Census 2010)Limited English Proficiency (population who speaks English “not well” or “not at all.”) (American Community Survey 2006-2010 5-Year Estimates)Households with No Car (American Community Survey 2006-2010 5-Year Estimates)Disabled Population (Census 2000) This data was used in the interactive mapping application found at http://gis.baltometro.org/Application/VPI/index.html. For more information on Transportation Equity work and studies at BMC, go to http://www.baltometro.org/about-the-brtb/transportation-equity. Note that for ACS and Census 2000 data margins of error are not provided. This data has been modified by the Baltimore Metropolitan Council and should not replace data directly loaded from the Census.Source: Variables are American Community Survey 2006-2010 5-Year Estimates, the 2000 Census (SF3), and the 2010 Census. Census tracts are the 2010 Census. Main Index is calculated by BMC.Date: Index published in May 2015. Date of raw data is either 2000, 2010, or 2006-2010 depending on the variable. See the above list for more information.Update: The VPI is updated approximately every 5 years. Data will be added as a separate layer.Data fields:PCT_NotWhite_NotHisp - Percent of the population in each tract that is a non-Hispanic minority. PCT_Hispanic - Percent of the population in each tract that is Hispanic or Latino. Pct75up - Percent of the population in each tract that is age 75 or higher. PCT_LEP - Percent of the Limited English Proficiency population in each tract.PCT_People_in_Poverty - Percent of the population in each tract that is living below the Federal poverty level.PCT_NOCAR - Percent of households in each tract that do not have a car.PCT_Disabl - Percent of the population in each tract that is disabled. Reg_NotWhite_NotHisp - Regional average for the population that is a non-Hispanic minority. This is for the same time period as the tract data. Reg_Hispanic - Regional average for the population that is Hispanic or Latino. This is for the same time period as the tract data. Reg_75up - Regional average for the population that is age 75 or higher. This is for the same time period as the tract data. Reg_LEP - Regional average for the Limited English Proficiency population. This is for the same time period as the tract data. Reg_Poverty - Regional average for the population that is living below the Federal poverty level. This is for the same time period as the tract data. Reg_NOCAR - Regional average for percent of households that do not have a car. This is for the same time period as the tract data. Reg_Disabl - Regional average for the population that is disabled. This is for the same time period as the tract data. FLAG_NotWhite_NotHisp - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". FLAG_Hispanic - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". FLAG_75up - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". FLAG_LEP - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". FLAG_Poverty - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". FLAG_NOCAR - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". FLAG_Disabl - This is used to determine the VPI. It is "1" if the tract number is greater than the regional average. Otherwise it is "0". INDEX - The sum of all the FLAG fields.

  14. A

    ‘Community Vulnerability (BCDC 2020)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Community Vulnerability (BCDC 2020)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-community-vulnerability-bcdc-2020-ac21/55b1f0d9/?iid=052-150&v=presentation
    Explore at:
    Dataset updated
    Feb 11, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Community Vulnerability (BCDC 2020)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/9cc93a24-8eee-4811-9fbf-3c98e7f4c657 on 11 February 2022.

    --- Dataset description provided by original source is as follows ---

    The San Francisco Bay Conservation and Development Commission Adapting to Rising Tides Program developed a dataset to better understand community vulnerability to current and future flooding due to sea level rise and storm surges. This data has been used in the Adapting To Rising Tides Bay Area Sea Level Rise Vulnerability and Assessment project as well as helping inform the implementation of the BCDC Environmental Justice and Social Equity Bay Plan amendment.


    The community vulnerability dataset contains four categories of information: 1. Social Vulnerability Indicators: Certain socioeconomic characteristics may reduce ability to prepare for, respond to, or recover from a hazard event. Census block groups with high concentrations (relative to the nine county Bay Area) of these characteristics are flagged as socially vulnerable, with each block group assigned a rank of highest, high, moderate, and low. Data is currently from American Community Survey (ACS) 2018 5-year estimates but is anticipated to be updated as new ACS 5-year estimates become available. 2. Contamination Vulnerability Indicators: The presence of contaminated lands and water raises health and environmental justice concerns, which worsen with flooding and sea level rise. A rank of highest, high, moderate, and lower for the severity of contamination in each block group was calculated using data compiled by CalEPA Office of Environmental Health Hazard Assessment (OEHHA) for use in CalEnviroScreen 3.0. 3. Residential Exposure to Sea Level Rise: Calculated by joining Metropolitan Transportation Commission 2010 residential parcel data with 2017 ART Bay Area Sea Level Rise and Shoreline Analysis data, FEMA 100 and 500 year flood zone data, and San Francisco 100-year precipitation data to generate the number of residential units exposed at each water level summed by block group. This methodology assumes that once a parcel is exposed to any amount of flooding, the entire number of residential units within that parcel are considered impacted. 4. Complementary Community Vulnerability Screening Tools: Many screening approaches exist to characterize disadvantaged or vulnerable communities. Often in the Bay Area, different designations of disadvantaged/vulnerable communities are located in the same area. It is recommended to use the ART approach in combination with other complementary tools and designations. The following are included in this shapefile as fields for cross-referencing: CalEnviroScreen 3.0 total score, Metropolitan Transportation Commission Community of Concern designation, UC Berkeley Displacement and Gentrification Typologies.

    Data and resources can be accessed at https://www.bcdc.ca.gov/data/community.html.

    For information about data development and access please review the Community Vulnerability User Guide and BCDC’s Github Repository.

    For additional descriptions of GIS methods used in ART Bay Area, please see the ART Bay Area Report Appendix: GIS Data and Methods.

    For more information, please contact GIS@bcdc.ca.gov.

    --- Original source retains full ownership of the source dataset ---

  15. a

    NY Disadvantaged Communities (DAC)

    • ai-poc-nycddc.hub.arcgis.com
    Updated Jun 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York City Department of Design + Construction (2024). NY Disadvantaged Communities (DAC) [Dataset]. https://ai-poc-nycddc.hub.arcgis.com/datasets/ny-disadvantaged-communities-dac
    Explore at:
    Dataset updated
    Jun 25, 2024
    Dataset authored and provided by
    New York City Department of Design + Construction
    Area covered
    Description

    This dataset identifies areas throughout the State that meet the final disadvantaged community definition as voted on by the Climate Justice Working Group on March 27th, 2023. It contains the 4,918 census tracts in New York State and identifies the 1,736 census tracts that make up the current Disadvantaged Communities (DAC) definition. The dataset also includes the 45 indicators, expressed as a percentile ranking, used to determine each census tracts’ Environmental Burden and Climate Change Risks, and Population Characteristics and Health Vulnerabilities. The source for the Census Tract data is the US Census Bureau, Geography Division, Year 2019. For more information, please visit https://www.census.gov/cgi-bin/geo/shapefiles/index.php. The chosen 45 indicators represent a variety of data sources, both private and public. Further details on the methodology and resources can be found at https://climate.ny.gov/DAC-Criteria in the Technical Documentation, Indicator Prioritization and Selection section.View Dataset on the Gateway

  16. d

    Disadvantaged Communities Designated by Justice40

    • catalog.data.gov
    • gis-california.opendata.arcgis.com
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Disadvantaged Communities Designated by Justice40 [Dataset]. https://catalog.data.gov/dataset/disadvantaged-communities-designated-by-justice40-a167d
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commission
    Description

    The U.S. Department of Transportation's and U.S. Department of Energy's joint interim definition of disadvantaged communities for the National Electric Vehicle Infrastructure (NEVI) Formula Program includes combined census tracts from DOT's working disadvantaged community definition and DOE's working DAC definition.Data downloaded in May 2022 from https://www.anl.gov/esia/electric-vehicle-charging-equity-considerations.

  17. f

    A participatory community case study of periurban coastal flood...

    • plos.figshare.com
    docx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erica Tauzer; Mercy J Borbor-Cordova; Jhoyzett Mendoza; Telmo De La Cuadra; Jorge Cunalata; Anna M Stewart-Ibarra (2023). A participatory community case study of periurban coastal flood vulnerability in southern Ecuador [Dataset]. http://doi.org/10.1371/journal.pone.0224171
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Erica Tauzer; Mercy J Borbor-Cordova; Jhoyzett Mendoza; Telmo De La Cuadra; Jorge Cunalata; Anna M Stewart-Ibarra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ecuador
    Description

    BackgroundPopulations in coastal cities are exposed to increasing risk of flooding, resulting in rising damages to health and assets. Adaptation measures, such as early warning systems for floods (EWSFs), have the potential to reduce the risk and impact of flood events when tailored to reflect the local social-ecological context and needs. Community perceptions and experiences play a critical role in risk management, since perceptions influence people’s behaviors in response to EWSFs and other interventions.MethodsWe investigated community perceptions and responses in flood-prone periurban areas in the coastal city of Machala, Ecuador. Focus groups (n = 11) were held with community members (n = 65 people) to assess perceptions of flood exposure, sensitivity, adaptive capacity, and current alert systems. Discussions were audio recorded, transcribed, and coded by topic. Participatory maps were field validated, georeferenced, and digitized using GIS software. Qualitative data were triangulated with historical government information on rainfall, flood events, population demographics, and disease outbreaks.ResultsFlooding was associated with seasonal rainfall, El Niño events, high ocean tides, blocked drainage areas, overflowing canals, collapsed sewer systems, and low local elevation. Participatory maps revealed spatial heterogeneity in perceived flood risk across the community. Ten areas of special concern were mapped, including places with strong currents during floods, low elevation areas with schools and homes, and other places that accumulate stagnant water. Sensitive populations included children, the elderly, physically handicapped people, low-income families, and recent migrants. Flood impacts included damages to property and infrastructure, power outages, and the economic cost of rebuilding/repairs. Health impacts included outbreaks of infectious diseases, skin infections, snakebite, and injury/drowning. Adaptive capacity was weakest during the preparation and recovery stages of flooding. Participants perceived that their capacity to take action was limited by a lack of social organization, political engagement, and financial capital. People perceived that flood forecasts were too general, and instead relied on alerts via social media.ConclusionsThis study highlights the challenges and opportunities for climate change adaptation in coastal cities. Areas of special concern provide clear local policy targets. The participatory approach presented here (1) provides important context to shape local policy and interventions in Ecuador, complimenting data gathered through standard flood reports, (2) provides a voice for marginalized communities and a mechanism to raise local awareness, and (3) provides a research framework that can be adapted to other resource-limited coastal communities at risk of flooding.

  18. i07 Water Shortage Vulnerability Sections

    • data.cnra.ca.gov
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i07 Water Shortage Vulnerability Sections [Dataset]. https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections
    Explore at:
    html, kml, csv, arcgis geoservices rest api, geojson, zipAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents a water shortage vulnerability analysis performed by DWR using modified PLSS sections pulled from the Well Completion Report PLSS Section Summaries. The attribute table includes water shortage vulnerability indicators and scores from an analysis done by CA Department of Water Resources, joined to modified PLSS sections. Several relevant summary statistics from the Well Completion Reports are included in this table as well. This data is from the 2024 analysis.

    Water Code Division 6 Part 2.55 Section 8 Chapter 10 (Assembly Bill 1668) effectively requires California Department of Water Resources (DWR), in consultation with other agencies and an advisory group, to identify small water suppliers and “rural communities” that are at risk of drought and water shortage. Following legislation passed in 2021 and signed by Governor Gavin Newsom, the Water Code Division 6, Section 10609.50 through 10609.80 (Senate Bill 552 of 2021) effectively requires the California Department of Water Resources to update the scoring and tool periodically in partnership with the State Water Board and other state agencies. This document describes the indicators, datasets, and methods used to construct this deliverable.  This is a statewide effort to systematically and holistically consider water shortage vulnerability statewide of rural communities, focusing on domestic wells and state small water systems serving between 4 and 14 connections. The indicators and scoring methodology will be revised as better data become available and stake-holders evaluate the performance of the indicators, datasets used, and aggregation and ranking method used to aggregate and rank vulnerability scores. Additionally, the scoring system should be adaptive, meaning that our understanding of what contributes to risk and vulnerability of drought and water shortage may evolve. This understanding may especially be informed by experiences gained while navigating responses to future droughts.”

    A spatial analysis was performed on the 2020 Census Block Groups, modified PLSS sections, and small water system service areas using a variety of input datasets related to drought vulnerability and water shortage risk and vulnerability. These indicator values were subsequently rescaled and summed for a final vulnerability score for the sections and small water system service areas. The 2020 Census Block Groups were joined with ACS data to represent the social vulnerability of communities, which is relevant to drought risk tolerance and resources. These three feature datasets contain the units of analysis (modified PLSS sections, block groups, small water systems service areas) with the model indicators for vulnerability in the attribute table. Model indicators are calculated for each unit of analysis according to the Vulnerability Scoring documents provided by Julia Ekstrom (Division of Regional Assistance).

    All three feature classes are DWR analysis zones that are based off existing GIS datasets. The spatial data for the sections feature class is extracted from the Well Completion Reports PLSS sections to be aligned with the work and analysis that SGMA is doing. These are not true PLSS sections, but a version of the projected section lines in areas where there are gaps in PLSS. The spatial data for the Census block group feature class is downloaded from the Census. ACS (American Communities Survey) data is joined by block group, and statistics calculated by DWR have been added to the attribute table. The spatial data for the small water systems feature class was extracted from the State Water Resources Control Board (SWRCB) SABL dataset, using a definition query to filter for active water systems with 3000 connections or less. None of these datasets are intended to be the authoritative datasets for representing PLSS sections, Census block groups, or water service areas. The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR.

    These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the Drought and Water Shortage Vulnerability Scoring: California's Domestic Wells and State Smalls Systems documentation for more information on indicators and scoring. These estimated indicator scores may sometimes be calculated in several different ways, or may have been calculated from data that has since be updated. Counts of domestic wells may be calculated in different ways. In order to align with DWR SGMO's (State Groundwater Management Office) California Groundwater Live dashboards, domestic wells were calculated using the same query. This includes all domestic wells in the Well Completion Reports dataset that are completed after 12/31/1976, and have a 'RecordType' of 'WellCompletion/New/Production or Monitoring/NA'.

    Please refer to the Well Completion Reports metadata for more information. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data.

    DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  19. V

    Vulnerability Index

    • data.virginia.gov
    • gisdata-arlgis.opendata.arcgis.com
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arlington GIS Portal (2024). Vulnerability Index [Dataset]. https://data.virginia.gov/dataset/vulnerability-index
    Explore at:
    zip, arcgis geoservices rest api, geojson, kml, html, csvAvailable download formats
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Arlington County, VA - GIS Mapping Center
    Authors
    Arlington GIS Portal
    Description

    Demographic vulnerability data at the census tract level within Arlington County. It is calculated using values from the American Community Survey (ACS) demographics. The data includes a number of components that make up the vulnerability ranking including persons of color, under 18, 65 and older, foreign born, income, college degree, and population under 200% poverty level. These are used to create a categorization of the census tracts.

    Contact: Department of Community Planning, Housing, and Development

    Data Accessibility: Publicly Available

    Update Frequency: Annually

    Document Last Revision Date: 11/21/2024

    Document Creation Date: 11/21/2024

    Feature Dataset Name: CPHD

    Layer Name: Vulnerability_Index_poly

  20. l

    Composite Population Vulnerability

    • data.lacounty.gov
    • geohub.lacity.org
    • +3more
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). Composite Population Vulnerability [Dataset]. https://data.lacounty.gov/datasets/composite-population-vulnerability/about
    Explore at:
    Dataset updated
    Dec 22, 2022
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Attribute names and descriptions are as follows:

    • STATE - Census State Number

    • COUNTY - Census County Number

    • TRACT - Census Tract Number

    • plltn_p - Clean Environment domain score (average of Z-scores of Diesel PM, Ozone, PM 2.5, Safe Drinking Water), statewide percentile ranking

    • atmbl_p - Percentage of households with access to an automobile, statewide percentile ranking

    • cmmt_pc - Percentage of workers, 16 years and older, who commute to work by transit, walking, or cycling, statewide percentile ranking

    • emplyd_ - Percentage of population aged 20-64 who are employed, statewide percentile ranking

    • abvpvr_ - Percent of the population with an income exceeding 200% of federal poverty level, statewide percentile ranking

    • prkccs_ - Percentage of the population living within a half-mile of a park, beach, or open space greater than 1 acre, statewide percentile ranking

    • trcnpy_ - Population-weighted percentage of the census tract area with tree canopy, statewide percentile ranking

    • twprnt_ - Percentage of family households with children under 18 with two parents, statewide percentile ranking

    • ozn_pct - Mean of summer months of the daily maximum 8-hour ozone concentration (ppm) averaged over three years (2012 to 2014), statewide percentile ranking

    • pm25_pc - Annual mean concentration of PM2.5 (average of quarterly means, μg/m3), over three years (2012 to 2014), statewide percentile ranking

    • dslpm_p - Spatial distribution of gridded diesel PM emissions from on-road and non-road sources for a 2012 summer day in July, statewide percentile ranking

    • h20cnt_ - Cal EnviroScreen 3.0 drinking water contaminant index for selected contaminants, statewide percentile ranking

    • wht_pct - Percent of Whites in the total population (not a percentile)

    • heatdays - Projected annual number of extreme heat days at 2070, (not a percentile)

    • impervsu_5 - Percent impervious surface cover, statewide percentile ranking

    • transita_5 - Percent of population residing within ½ mile of a major transit stop, statewide percentile ranking

    • uhii_pctil - Urban heat island index: sum of 182 day temp. differences (degree-hr) between urban and rural reference, statewide percentile ranking

    • traffic_1 - Sum of traffic volumes adjusted by road segment length divided by total road length within 150 meters of the census tract boundary, statewide percentile ranking

    • children_1 - Percent of population under 5 years of age, statewide percentile ranking

    • elders_p_1 - Percent of population 65 years of age and older, statewide percentile ranking

    • englishs_5 - Percentage of households where at least one person 14 years and older speaks English very well, statewide percentile ranking

    • pedshurt_1 - 5-year (2006-2010) annual average rate of severe and fatal pedestrian injuries per 100,000 population, statewide percentile ranking

    • leb_pctile - Life expectancy at birth in 2010, statewide percentile ranking

    • abvpvty_s - Poverty, lowest 25th percentile statewide

    • employ_s - Unemployed, lowest 25th percentile statewide

    • twoprnt_s - Two Parent Households, lowest 25th percentile statewide

    • chldrn_s - Young Children, lowest 25th percentile statewide

    • elderly_s - Elderly, lowest 25th percentile statewide

    • englishs_s - Non-English Speaking, lowest 25th percentile statewide

    • majorwht_s - Majority Minority Population, over 50 percent of population non-white

    • D1_Social - Social barriers to accessing outdoor opportunities, combined indicators score

    • actvcom_s - Limited Active Commuting, lowest 25th percentile statewide

    • autoacc_s - Limited Automobile Access, lowest 25th percentile statewide

    • transita_s - Limited Public Transit Access, lowest 25th percentile statewide

    • trafficd_s - Traffic Density, lowest 25th percentile statewide

    • pedinjry_s - Pedestrian Injuries, lowest 25th percentile statewide

    • D2_Transp - Transportation barriers to accessing outdoor opportunities, combined indicators score

    • expbirth_s - Life Expectancy at Birth, lowest 25th percentile statewide

    • clneviro_s - Pollution, lowest 25th percentile statewide

    • D3_Health - Health Vulnerability, combined indicators score

    • parkacc_s - Limited Park Access, lowest 25th percentile statewide

    • treecan_s - Limited Tree Canopy, lowest 25th percentile statewide

    • impsurf_s - Impervious Surface, lowest 25th percentile statewide

    • exheat_s - Excessive Heat Days, highest of four quantiles

    • hisland_s - Urban Heat Island Index, lowest 25th percentile statewide

    • D4_Environ Environmental Vulnerability, combined indicators score

    • D1_Multi Multiple indicators (2 or more) with social barriers to accessessing outdoor opportunities

    • D2_Multi Multiple indicators (2 or more) with transportation barriers to accessessing outdoor opportunities

    • D3_Multi Multiple indicators (1 or more) with health vulnerability

    • D4_Multi Multiple indicators (2 or more) with environmental vulnerability

    • Comp_DIM - Multiple Indicators, combined dimensions score

    • D1_Major - Majority indicators (4 or more) with social barriers to accessessing outdoor opportunities

    • D2_Major - Majority indicators (3 or more) with transportation barriers to accessessing outdoor opportunities

    • D3_Major - Majority indicators (1 or more) with health vulnerability

    • D4_Major - Majority indicators (3 or more) with environmental vulnerability

    • Comp_DIM_2 - Majority Indicators, combined dimensions score


    DISCLAIMER: The data herein is for informational purposes, and may not have been prepared for or be suitable for legal, engineering, or surveying intents. The County of Los Angeles reserves the right to change, restrict, or discontinue access at any time. All users of the maps and data presented on https://lacounty.maps.arcgis.com or deriving from any LA County REST URLs agree to the "Terms of Use" outlined on the County of LA Enterprise GIS (eGIS) Hub (https://egis-lacounty.hub.arcgis.com/pages/terms-of-use).
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Portland, Oregon (2023). Vulnerability [Dataset]. https://hub.arcgis.com/datasets/PDX::vulnerability

Vulnerability

Explore at:
Dataset updated
Aug 31, 2023
Dataset authored and provided by
City of Portland, Oregon
Area covered
Description

Click here for research on the effects of land use planning and gentrification on Portland’s communities of color and other vulnerable populations. Economic Vulnerability Assessment:This map identifies census tracts in Portland where residents are more vulnerable to changing economic conditions, making resisting displacement more difficult. These areas have residents who are more likely to:Be "housing cost-burdened", meaning they pay 30% or more of their income on housing costs.Belong to communities of color, particularly Black and Indigenous communities.Lack college degrees, andHave Lower Incomes.This dataset provides an update to the vulnerability risk analysis that Dr. Lisa Bates prepared for the Bureau of Planning and Sustainability in 2012.This latest dataset includes the following changes in methodology:Low income households were replaced with a size-adjusted median household income. This helps account for how different household sizes experience living with different incomes.Renter households were replaced with households that are housing cost-burdened (pay 30%+ on housing costs). This acknowledges that homeowners who pay a high percentage of their income on housing can be vulnerable to displacement as well.A new variable, Black and Indigenous population, was added to better incorporate past harms to these communities.The vulnerability score was rescaled from 0 to 100. A score of 60 or greater is considered a vulnerable tract.Data sources: U.S. Census Bureau, 2022 ACS 5-year estimates, Tables B25106, B25010, B03002, B19013, B15002. Prepared Summer 2024 by the Portland Bureau of Planning and Sustainability.Download dataset from City of Portland Open Data siteAbout the Bureau of Planning and SustainabilityThe Portland Bureau of Planning and Sustainability (BPS) develops creative and practical solutions to enhance Portland’s livability, preserve distinctive places and plan for a resilient future.Need more information about this data? Email bpsgis@portlandoregon.gov-- Additional Information: Category: Planning Purpose: Map the areas susceptible to gentrification pressure. Update Frequency: Yearly-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=54141

Search
Clear search
Close search
Google apps
Main menu