For many years, the California Department of Water Resources (DWR) has collected land use data throughout the state and used this information to develop water use estimates for statewide and regional planning efforts, including water use projections, water use efficiency evaluation, groundwater model development, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliance issues, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography and new analytical tools make remote sensing based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate, large-scale crop and land use identification to be performed at desired time increments, and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018, 2019, 2020, 2021 and PROVISIONALLY for 2022. Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer. For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys. For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
DOUGLAS COUNTY SURVEY/GISGIS PARCEL MAPPING GUIDELINES FOR PARCEL DISCREPANCIESIt is the intent of the Douglas County GIS Parcel Mapping to accurately identify the areas of land parcels to be valued and taxed 1. Discrepancies in areas• The Auditor/Assessor (tax) acreage areas started with the original US General Land Office (GLO) township plat maps created from the Public Land Survey (PLS) that was done between 1858 and 1871. The recovery of the PLS corners and the accurate location of these corners with GPS obtained coordinates has allowed for accurate section subdivisions, which results in accurate areas for parcels based on legal descriptions, which may be significantly different than the original areas. (See Example 2)• Any parcel bordering a meandered lake and/or a water boundary will likely have a disparity of area between the Auditor/Assessor acreages and the GIS acreages because of the inaccuracy of the original GLO meander lines from which the original areas were determined. Water lines are not able to be drafted to the same accuracy as the normal parcel lines. The water lines are usually just sketched on a survey and their dimensions are not generally given on a land record. The water boundaries of our GIS parcels are located from aerial photography. This is a subjective determination based on the interpretation by the Survey/GIS technician of what is water. Some lakes fluctuate significantly and the areas of all parcels bordering water are subject to constant change. In these cases the ordinary high water line (OHW) is attempted to be identified. Use of 2-foot contours will be made, if available. (See Example 1)• Some land records do not accurately report the area described in the land description and the description area is ignored. (See Example 3)• The parcel mapping has made every attempt to map the parcels based on available survey information as surveyed and located on the ground. This may conflict with some record legal descriptions.Solutions• If an actual survey by a licensed Land Surveyor is available, it will be utilized for the tax acreage.• If the Auditor/Assessor finds a discrepancy between the tax and GIS areas, they will request a review by the County Survey/GIS department.• As a starting guideline, the County Survey/GIS department will identify all parcels that differ in tax area versus GIS parcel area of 10 % or more and a difference of at least 5 acres. (This could be expanded later after the initial review.)• Each of these identified parcels will be reviewed individually by the County Survey/GIS department to determine the reason for the discrepancy and a recommendation will be made by the County Survey/GIS department to the Auditor/Assessor if the change should be made or not.• If a change is to be made to the tax area, a letter will be sent to the taxpayer informing them that their area will be changed during the next tax cycle, which could affect their property valuation. This letter will originate from the Auditor/Assessor with explanation from the County Survey/GIS department. 2. Gaps and Overlaps• Land descriptions for adjoining parcels sometimes overlap or leave a gap between them.o In these instances the Survey/GIS technician has to make a decision where to place this boundary. A number of circumstances are reviewed to facilitate this decision as these dilemmas are usually decided on a case by case basis. All effort will be made to not leave a gap, but sometimes this is not possible and the gap will be shown with “unknown” ownership. (Note: The County does not have the authority to change boundaries!)o Some of the circumstances reviewed are: Which parcel had the initial legal description? Does the physical occupation of the parcel line as shown on the air photo more closely fit one of the described parcels? Interpretation of the intent of the legal description. Is the legal description surveyable?Note: These overlaps will be shown on the GIS map with a dashed “survey line” and accompanying text for the line not used for the parcel boundary. 3. Parcel lines that do not match location of buildings Structures on parcels do not always lie within the boundaries of the parcel. This may be a circumstance of building without the benefit of a survey or of misinterpreting these boundaries. The parcel lines should be shown accurately as surveyed and/or described regardless of the location of structures on the ground. NOTE: The GIS mapping is not a survey, but is an interpretation of parcel boundaries predicated upon resources available to the County Survey/GIS department.Gary Stevenson Page 1 7/21/2017Example 1Example 2A Example 2B Example 3
This dataset (2017-2023) is a compilation of the Land Use/Land Cover datasets created by the 5 Water Management Districts in Florida based on imagery -- Northwest Florida Water Management District (NWFWMD) 2022.Bay (1/4/2022 – 3/24/2022), Calhoun (1/7/2022 – 1/18/2022),Escambia (11/13/2021 – 1/15/2021), Franklin (1/7/2022 – 1/18/2022), Gadsden (1/7/2022 – 1/16/2022), Gulf (1/7/2022 – 1/14/2022), Holmes (1/8/2022 – 1/18/2022), Jackson (1/7/2022 – 1/14/2022), Jefferson (1/7/2022 – 2/16/2022), Leon (February 2022), Liberty (1/7/2022 – 1/16/2022), Okaloosa (10/31/2021 – 2/13/2022), Santa Rosa (10/26/2021-1/17/2022), Wakulla (1/7/2022 – 1/14/2022), Walton (1/7/2022-1/14/2022), Washington (1/13/2022 – 1/19/2022).Suwannee River Water Management District (SRWMD) 2019-2023.(Alachua 20200102-20200106), (Baker 20200108-20200126), (Bradford 20181020-20190128), (Columbia 20181213-20190106), (Gilchrist 20181020-20190128), (Levy 20181020-20190128), (Suwannee 20181217-20190116), (Union 20181020-20190128).(Dixie 12/17/2021-01/29/2022), (Hamilton 12/17/2021-01/29/2022), (Jefferson 01/07/2022-02/16/2022), (Lafayette 12/17/2021-01/29/2022), (Madison 12/17/2021-01/29/2022), (Taylor 12/17/2021-01/29/2022.Southwest Florida Water Management District (SWFWMD) 2020. South Florida Water Management District (SFWMD) 2021-2023.St. John's River Water Management District (SJRWMD) 2020.Year Flight Season Counties:2020 (Dec. 2019 - Mar 2020) Alachua, Baker, Clay, Flagler, Lake, Marion, Osceola, Polk, Putnam.2021 (Dec. 2020 - Mar 2021) Brevard, Indian River, Nassau, Okeechobee, Orange, St. Johns, Seminole, Volusia. 2022 (Dec. 2021 - Mar 2022) Bradford, Union. Codes are derived from the Florida Land Use, Cover, and Forms Classification System (FLUCCS-DOT 1999) but may have been altered to accommodate region differences by each of the Water Management Districts.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The United States Public Land Survey (PLS) divided land into one square
mile units, termed sections. Surveyors used trees to locate section corners
and other locations of interest (witness trees). As a result, a systematic
ecological dataset was produced with regular sampling over a large region
of the United States, beginning in Ohio in 1786 and continuing westward.
We digitized and georeferenced archival hand drawn maps of these witness
trees for 27 counties in Ohio. This dataset consists of a GIS point
shapefile with 11,925 points located at section corners, recording 26,028
trees (up to four trees could be recorded at each corner). We retain species
names given on each archival map key, resulting in 70 unique species common
names. PLS records were obtained from hand-drawn archival maps of original
witness trees produced by researchers at The Ohio State University in the
1960’s. Scans of these maps are archived as “The Edgar Nelson Transeau Ohio
Vegetation Survey” at The Ohio State University: http://hdl.handle.net/1811/64106.
The 27 counties are: Adams, Allen, Auglaize, Belmont, Brown, Darke,
Defiance, Gallia, Guernsey, Hancock, Lawrence, Lucas, Mercer, Miami,
Monroe, Montgomery, Morgan, Noble, Ottawa, Paulding, Pike, Putnam, Scioto,
Seneca, Shelby, Williams, Wyandot. Coordinate Reference System:
North American Datum 1983 (NAD83). This material is based upon work supported by the National Science Foundation under grants #DEB-1241874, 1241868, 1241870, 1241851, 1241891, 1241846, 1241856, 1241930.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global cadastral mapping market size was valued at approximately USD 4.2 billion in 2023 and is projected to reach around USD 7.9 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.2% during the forecast period. This market growth can be attributed to increasing urbanization, rapid advancements in geospatial technologies, and the growing need for efficient land management systems across various regions.
The expansion of urban areas and the corresponding increase in the need for effective land management infrastructure are significant growth factors driving the cadastral mapping market. As urbanization accelerates globally, local governments and planning agencies require sophisticated tools to manage and record land ownership, boundaries, and property information. Enhanced geospatial technologies, including Geographic Information Systems (GIS) and remote sensing, are pivotal in facilitating accurate and efficient cadastral mapping, thus contributing to market growth.
Another key growth factor is the rising demand for infrastructure development. As nations invest in large-scale infrastructure projects such as roads, railways, and smart cities, there is an increased need for precise land data to ensure the proper allocation of resources and to avoid legal disputes. Cadastral mapping provides the critical data needed for these projects, hence its demand is surging. Additionally, governments worldwide are increasingly adopting digital platforms to streamline land administration processes, further propelling the market.
Furthermore, the agricultural sector is also significantly contributing to the growth of the cadastral mapping market. Modern agriculture relies heavily on accurate land parcel information for planning and optimizing crop production. By integrating cadastral maps with other geospatial data, farmers can improve land use efficiency, monitor crop health, and enhance yield predictions. This integration is particularly valuable in precision farming, which is becoming more prevalent as the world's population grows and the demand for food increases.
Regionally, Asia Pacific is expected to witness the highest growth in the cadastral mapping market. Factors such as rapid urbanization, extensive infrastructure development projects, and the need for improved land management are driving the demand in this region. Moreover, governments in countries like India and China are investing heavily in creating digital land records and implementing smart city initiatives, which further boosts the market. The North American and European markets are also substantial, driven by the advanced technological infrastructure and well-established land administration systems.
The cadastral mapping market can be segmented by component into software, hardware, and services. The software segment holds a significant share in this market, driven by the increasing adoption of advanced GIS and mapping software solutions. These software solutions enable accurate land parcel mapping, data analysis, and integration with other geospatial data systems, making them indispensable tools for cadastral mapping. Companies are continuously innovating to provide more intuitive and comprehensive software solutions, which is expected to fuel growth in this segment.
Hardware components, including GPS devices, drones, and other surveying equipment, are also critical to the cadastral mapping market. The hardware segment is expected to grow steadily as technological advancements improve the accuracy and efficiency of these devices. Innovations such as high-resolution aerial imaging and LIDAR technology are enhancing the capabilities of cadastral mapping hardware, allowing for more detailed and precise data collection. This segment is particularly essential for field surveying and data acquisition, forming the backbone of cadastral mapping projects.
The services segment encompasses a wide range of offerings, including consulting, implementation, and maintenance services. Professional services are vital for the successful deployment and operation of cadastral mapping systems. Governments and private sector organizations often rely on specialized service providers to implement these systems, train personnel, and ensure ongoing support. As the complexity of cadastral mapping projects increases, the demand for expert services is also expected to rise, contributing to the growth of this segment.
Integration services are another critical component within the
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.
To better understand factors potentially contributing to the occurrence of rainfall-induced landslides in Puerto Rico, we evaluated the locations of landslides there following Hurricane Maria (Hughes et al., 2019) and potential contributing factors. This data release provides results of evaluations of landslide locations compared to soil classification and land cover, which involved frequency-ratio analyses (for example, Lee and Pradhan, 2006; Lee et al., 2007; He and Beighley, 2008; Lepore et al., 2012; Chalkias et al., 2014). Soil classification data were obtained from the U.S. Department of Agriculture Natural Resources Conservation Service (2018) and land cover data were obtained from the Puerto Rico Gap Analysis Program (Gould et al., 2008). The data presented herewith were produced during a study described in Hughes, K.S., and Schulz, W.H., ####, Map depicting susceptibility to landslides triggered by intense rainfall, Puerto Rico: U.S. Geological Survey Open-file Report #####. Three files are included with this data release. Data files soil_classification_results.csv and land_cover_results.csv provide results of the analyses of landslide locations compared to soil classification and land cover, respectively. A read-me file (readme.txt) provides the information contained in this summary and additional description of data available from the data files. References Chalkias, C., Kalogirou, S., and Ferntinou, M., 2014, Landslide susceptibility, Peloponnese Peninsula in South Greece: Journal of Maps, v. 10, no. 2, p. 211-222. Gould, W.A., Alarcón, C., Fevold, B., Jiménez, M.E., Martinuzzi, S., Potts, G., Quiñones, M., Solórzano, M., and Ventosa, E., 2008, The Puerto Rico Gap Analysis Project. Volume 1: Land cover, vertebrate species distributions, and land stewardship. Gen. Tech. Rep. IITF-GTR-39. Río Piedras, PR: U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry. 165 p. https://www.sciencebase.gov/catalog/item/560c3b2de4b058f706e5411e. Last accessed 12 September 2019. He, Y., and Beighley, R.E., 2008, GIS‐based regional landslide susceptibility mapping: a case study in southern California: Earth Surface Processes and Landforms, v. 33, no. 3, p. 380-393. Hughes, K.S., Bayouth García, D., Martínez Milian, G.O., Schulz, W.H., and Baum, R.L., 2019, Map of slope-failure locations in Puerto Rico after Hurricane María: U.S. Geological Survey data release: https://doi.org/10.5066/P9BVMD74. https://www.sciencebase.gov/catalog/item/5d4c8b26e4b01d82ce8dfeb0. Last accessed 12 September 2019. Lee, S., and Pradhan, B., 2006, Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia: Journal of Earth System Science, v. 115, no. 6, p. 661-672. Lee, S., Ryu, J-H., and Kim, I-S., 2007, Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea: Landslides v. 4, p. 327–338. Lepore, C., Kamal, S.A., Shanahan, P., and Bras, R.L., 2012, Rainfall-induced landslide susceptibility zonation of Puerto Rico: Environmental Earth Sciences, v. 66, p. 1667-1681. U.S. Department of Agriculture Natural Resources Conservation Service, 2018, Soil Survey Geographic (SSURGO) database for Puerto Rico, all regions: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Last accessed 12 September 2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Download linkSizeType2019 NLCD2.28 GBapplication/zipThe U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011 and 2016. The 2016 release saw land cover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019.The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.National Land Cover Database (NLCD) 2019 Impervious ProductsNational Land Cover Database (NLCD) 2019 Land Cover Products
Land cover has been interpreted from Satellite images and field checked, other information has been digitized from topographic maps
Members informations:
Attached Vector(s):
MemberID: 1
Vector Name: Land use
Source Map Name: SPOT Pan
Source Map Scale: 50000
Source Map Date: 1989/90
Projection: Polyconic on Modified Everest Ellipsoid
Feature_type: polygon
Vector
Land use maps, interpreted from SPOT panchromatic imagery and field
checked (18 classes)
Members informations:
Attached Vector(s):
MemberID: 2
Vector Name: Administrative boundaries
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: polygon
Vector
Dzongkhags (Districts) and Gewogs
Members informations:
Attached Vector(s):
MemberID: 3
Vector Name: Roads
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: lines
Vector
Road network
Attached Report(s)
Member ID: 4
Report Name: Atlas of Bhutan
Report Authors: Land use planning section
Report Publisher: Ministry of Agriculture, Thimpu
Report Date: 1997-06-01
Report
Land cover (1:250000) and area statistics of 20 Dzongkhags
This is a dataset download, not a document. The Open button will start the download.This data layer is an element of the Oregon GIS Framework and has been clipped to the Oregon boundary and reprojected to Oregon Lambert (2992). The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released four National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, and 2011. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2016. The NLCD 2016 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2016 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2016: a streamlined process for assembling and preprocessing Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2016 production. The performance of the developed strategies and methods were tested in twenty World Reference System-2 path/row throughout the conterminous U.S. An overall agreement ranging from 71% to 97% between land cover classification and reference data was achieved for all tested area and all years. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2016 operational mapping. Questions about the NLCD 2016 land cover product can be directed to the NLCD 2016 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS dataset is showing the land use and land cover of Central Germany on a 500x500 m grid. Central Germany covers the area of the federal states of Saxony, Saxony-Anhalt and Thuringia. The data is based on the Corine Land Cover (CLC) map, the German Soil Map BUEK, Natural protection areas of the BfN and statistics. For further information please see the metadata Excel sheet as well as Wochele, S., Priess, J., Thrän, D., O’Keeffe, S., (2014): Crop allocation model “CRAM” - an approach for dealing with biomass supply from arable land as part of a life cycle inventory. 22nd European Biomass Conference and Exhibition, CCH -Congress Center Hamburg, 24-25 June 2014 EU BC&E Proceedings 2014, ETA-Florence Renewable Energies, Florence. doi: 10.5071/22ndEUBCE2014-1AO.5.4
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The 3D Land Surveying System market is experiencing robust growth, projected to reach a market size of $1752.7 million in 2025. While the provided CAGR is missing, considering the technological advancements driving automation in surveying and the increasing demand for precise data in infrastructure development and construction, a conservative estimate of a 7% CAGR from 2025 to 2033 is reasonable. This would indicate a significant expansion of the market, driven by factors such as the increasing adoption of advanced technologies like LiDAR and photogrammetry, rising infrastructure investments globally, and the need for efficient and accurate land data for urban planning and environmental monitoring. The market segmentation, encompassing fixed and mobile surveying systems and applications across surveying & mapping, construction, and other sectors, reveals diverse growth opportunities. The preference for mobile systems is likely to increase due to their portability and ease of use, while the construction sector is expected to be a major driver of market growth due to the rising number of construction projects globally. The regional distribution shows substantial potential across North America, Europe, and Asia-Pacific, reflecting the concentration of developed economies and significant infrastructure investments. However, developing regions in the Middle East & Africa and South America are also showing promising growth potential as infrastructure development and urbanization accelerate. Competitive dynamics involve a mix of established surveying firms and emerging technology providers, emphasizing both service-based and technology-driven solutions. The continued integration of AI and machine learning into surveying systems is likely to further enhance the efficiency and accuracy of land surveying, fueling market expansion in the coming years. This combination of technological innovation and growing infrastructural needs ensures a sustained upward trajectory for the 3D Land Surveying System market.
The statewide dataset contains a combination of land cover mapping from 2016 aerial imagery and land use derived from standardized assessor parcel information for Massachusetts. The data layer is the result of a cooperative project between MassGIS and the National Oceanic and Atmospheric Administration’s (NOAA) Office of Coastal Management (OCM). Funding was provided by the Mass. Executive Office of Energy and Environmental Affairs.
This land cover/land use dataset does not conform to the classification schemes or polygon delineation of previous land use data from MassGIS (1951-1999; 2005).In this map service layer hosted at MassGIS' ArcGIS Server, all impervious polygons are symbolized by their generalized use code; all non-impervious land cover polygons are symbolized by their land cover category. The idea behind this method is to use both cover and use codes to provide a truer picture of how land is being used: parcel use codes may indicate allowed or assessed, not actual use; land cover alone (especially impervious) does not indicate actual use.
See the full datalayer description for more details.This map service is best displayed at large (zoomed in) scales. Also available are a Feature Service and a Tile Service (cache). The tile cache will display very quickly in in ArcGIS Online, ArcGIS Desktop, and other applications that can consume tile services.
High resolution land cover dataset for City of Boston, MA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2013 LiDAR data, 2014 Orthoimagery, and 2016 NAIP imagery. Ancillary data sources included GIS data provided by City of Boston, MA or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2500 and all observable errors were corrected.
High resolution land cover dataset for City of Boston, MA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2013 LiDAR data, 2014 Orthoimagery, and 2016 NAIP imagery. Ancillary data sources included GIS data provided by City of Boston, MA or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2500 and all observable errors were corrected.
Credits: University of Vermont Spatial Analysis Laboratory in collaboration with the City of Boston, Trust for Public Lands, and City of Cambridge.
LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)
High resolution land cover dataset for Virginia Beach, Virginia. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2018 LiDAR data and 2018 NAIP imagery. Ancillary data sources included GIS data provided by Virginia Beach, Virginia Beach, Virginia or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:3500 and all observable errors were corrected.
For many years, the California Department of Water Resources (DWR) has collected land use data throughout the state and used this information to develop water use estimates for statewide and regional planning efforts, including water use projections, water use efficiency evaluation, groundwater model development, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliance issues, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography and new analytical tools make remote sensing based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate, large-scale crop and land use identification to be performed at desired time increments, and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018, 2019, 2020, 2021 and PROVISIONALLY for 2022. Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer. For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys. For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.