100+ datasets found
  1. g

    SDOT GIS Datasets

    • gimi9.com
    • data.seattle.gov
    • +3more
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). SDOT GIS Datasets [Dataset]. https://gimi9.com/dataset/data-gov_sdot-gis-datasets-e011c
    Explore at:
    Dataset updated
    Oct 7, 2019
    Description

    The City of Seattle Transportation GIS Datasets | https://data-seattlecitygis.opendata.arcgis.com/datasets?t=transportation | Lifecycle status: Production | Purpose: to enable open access to SDOT GIS data. This website includes over 60 transportation-related GIS datasets from categories such as parking, transit, pedestrian, bicycle, and roadway assets. | PDDL: https://opendatacommons.org/licenses/pddl/ | The City of Seattle makes no representation or warranty as to its accuracy. The City of Seattle has created this service for our GIS Open Data website. We do reserve the right to alter, suspend, re-host, or retire this service at any time and without notice. | Datasets: 2007 Traffic Flow Counts, 2008 Traffic Flow Counts, 2009 Traffic Flow Counts, 2010 Traffic Flow Counts, 2011 Traffic Flow Counts, 2012 Traffic Flow Counts, 2013 Traffic Flow Counts, 2014 Traffic Flow Counts, 2015 Traffic Flow Counts, 2016 Traffic Flow Counts, 2017 Traffic Flow Counts, 2018 Traffic Flow Counts, Areaways, Bike Racks, Blockface, Bridges, Channelization File Geodatabase, Collisions, Crash Cushions, Curb Ramps, dotMaps Active Projects, Dynamic Message Signs, Existing Bike Facilities, Freight Network, Greater Downtown Alleys, Guardrails, High Impact Areas, Intersections, Marked Crosswalks, One-Way Streets, Paid Area Curbspaces, Pavement Moratoriums, Pay Stations, Peak Hour Parking Restrictions, Planned Bike Facilities, Public Garages or Parking Lots, Radar Speed Signs, Restricted Parking Zone (RPZ) Program, Retaining Walls, SDOT Capital Projects Input, Seattle On Street Paid Parking-Daytime Rates, Seattle On Street Paid Parking-Evening Rates, Seattle On Street Paid Parking-Morning Rates, Seattle Streets, SidewalkObservations, Sidewalks, Snow Ice Routes, Stairways, Street Design Concept Plans, Street Ends (Shoreline), Street Furnishings, Street Signs, Street Use Permits Use Addresses, Streetcar Lines, Streetcar Stations, Traffic Beacons, Traffic Cameras, Traffic Circles, Traffic Detectors, Traffic Lanes, Traffic Signals, Transit Classification, Trees.

  2. Public Road Functional Classification

    • gisdata-caltrans.opendata.arcgis.com
    • data.ca.gov
    • +2more
    Updated Oct 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California_Department_of_Transportation (2021). Public Road Functional Classification [Dataset]. https://gisdata-caltrans.opendata.arcgis.com/datasets/cf4982ddf16c4c9ca7242364c94c7ad6
    Explore at:
    Dataset updated
    Oct 19, 2021
    Dataset provided by
    California Department of Transportationhttp://dot.ca.gov/
    Authors
    California_Department_of_Transportation
    Area covered
    Description

    This Functional Classification dataset was exported from Caltrans Linear Reference System (LRS) on July 3rd, 2024. The LRS serves as the framework upon which the Highway Performance Monitoring System (HPMS) and other business data are managed.

  3. D

    Renter Households by Income Category

    • data.seattle.gov
    • catalog.data.gov
    • +2more
    application/rdfxml +5
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Renter Households by Income Category [Dataset]. https://data.seattle.gov/dataset/Renter-Households-by-Income-Category/vtrr-tzqh
    Explore at:
    csv, json, application/rdfxml, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Oct 22, 2024
    Description

    Displacement risk indicator showing the distribution of renter households and renter units between different income brackets, covering the entire city from 2006 to the most recent year of data available.

  4. d

    Vegetation classification crosswalk database for use in GIS to synchronize...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Vegetation classification crosswalk database for use in GIS to synchronize vegetation map layers of the NPS Great Lakes Network to the U.S. National Vegetation Classification [Dataset]. https://catalog.data.gov/dataset/vegetation-classification-crosswalk-database-for-use-in-gis-to-synchronize-vegetation-map-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, The Great Lakes
    Description

    The geodatabase contains 13 relate tables that together provide updated and synchronized classifications to an existing vegetation map layer for each of the nine park units in the Great Lakes Network (GLKN) of the National Park Service (NPS) Natural Resource Inventory and Monitoring Program. The classifications include 1) vegetation types at every hierarchical level in the 2015 version of the U.S. National Vegetation Classification (USNVC) and 2) map classes that represent vegetation and land cover in the vegetation map layers. Furthermore, the tables provide a crosswalk between the two classifications (vegetation and map). Each park unit in GLKN has received, at different times over several years, vegetation data products from the NPS Vegetation Mapping Inventory (VMI) Program. However, the vegetation and map classifications were at different stages of development over these years. With this geodatabase product, having a series of already linked relate tables, the original vegetation map layer for each park unit can be linked to the updated and synchronized classification information for both vegetation types and map classes.

  5. Human Settlements Classification (Landsat 8)

    • hub.arcgis.com
    • angola.africageoportal.com
    • +3more
    Updated Feb 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Human Settlements Classification (Landsat 8) [Dataset]. https://hub.arcgis.com/content/f7754e9617b84356845e5f877d3c36c6
    Explore at:
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Human settlement maps are useful in understanding growth patterns, population distribution, resource management, change detection, and a variety of other applications where information related to earth surface is required. Human settlements classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 30 meters.)Note: This model is trained to work on Landsat 8 Imagery datasets which are in WGS 1984 Web Mercator (auxiliary sphere) coordinate system (WKID 3857).OutputClassified layer containing two classes: settlement and otherApplicable geographiesThis model is expected to work well in the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 91.6 percent.Training dataThis model has been trained on an Esri proprietary human settlements classification dataset.Sample resultsHere are a few results from the model.

  6. Rental Units by Affordability Category

    • catalog.data.gov
    • data.seattle.gov
    • +2more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Rental Units by Affordability Category [Dataset]. https://catalog.data.gov/dataset/rental-units-by-affordability-category-ffa4b
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Description

    Displacement risk indicator showing the distribution of renter households and renter units between different income brackets, covering the entire city from 2006 to the most recent year of data available.

  7. d

    GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-gis-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Philippines, Nigeria, Egypt, United Arab Emirates, Thailand, Taiwan, Kenya, United States of America, Malaysia, Saudi Arabia
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live includes:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  8. Curb Space Categories

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Curb Space Categories [Dataset]. https://catalog.data.gov/dataset/curb-space-categories-20d71
    Explore at:
    Dataset updated
    Mar 22, 2025
    Dataset provided by
    Description

    Displays Curb Space Categories maintained by the Seattle Department of Transportation.Refresh Cycle: DailyFeature Class: SDOT.CURB_SPACES

  9. i15 Crop Mapping 2018

    • gis.data.ca.gov
    • data.cnra.ca.gov
    • +5more
    Updated Aug 31, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    gis_admin@water.ca.gov_DWR (2021). i15 Crop Mapping 2018 [Dataset]. https://gis.data.ca.gov/datasets/66744a45fa8748c7ba1c3ef0be938da5
    Explore at:
    Dataset updated
    Aug 31, 2021
    Dataset provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Authors
    gis_admin@water.ca.gov_DWR
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Description

    Land use data is critically important to the work of the Department of Water Resources (DWR) and other California agencies. Understanding the impacts of land use, crop location, acreage, and management practices on environmental attributes and resource management is an integral step in the ability of Groundwater Sustainability Agencies (GSAs) to produce Groundwater Sustainability Plans (GSPs) and implement projects to attain sustainability. Land IQ was contracted by DWR to develop a comprehensive and accurate spatial land use database for the Water Year 2018, covering over 9.4 million acres of Irrigable agriculture on a field scale and additional areas of urban extent. The primary objective of this effort was to produce a spatial land use database with accuracies exceeding 95% using remote sensing, statistical, and temporal analysis methods. This project is an extension of the 2014 and 2016 land use mapping, which classified over 14 million acres of land into Irrigable agriculture and urban area. Unlike the 2014 and 2016 datasets, the Water Year 2018 dataset includes multi-cropping and incorporates ground-truth data from Siskiyou, Modoc, Lassen and Shasta counties. Land IQ integrated crop production knowledge with detailed ground truth information and multiple satellite and aerial image resources to conduct remote sensing land use analysis at the field scale. Individual fields (boundaries of homogeneous crop types representing true Irrigable area, rather than legal parcel boundaries) were classified using a crop category legend and a more specific crop type legend. A supervised classification algorithm using a random forest approach was used to classify delineated fields and was carried out county by county where training samples were available. Random forest approaches are currently some of the highest performing methods for data classification and regression. To determine frequency and seasonality of multiple-cropped fields, peak growth dates were determined for annual crops. Fields were attributed with DWR crop categories and included citrus/subtropical, deciduous fruits and nuts, field crops, grain and hay, idle, pasture, rice, truck crops, urban, vineyards, young perennials and wetland. These categories represent aggregated groups of specific crop types in the Land IQ dataset. Accuracy was calculated for the crop mapping using both DWR and Land IQ crop legends. The overall accuracy result for the crop mapping statewide was 96.5% using the Land IQ legend and 98.3% using the DWR legend. Accuracy and error results varied among crop types. In particular, some less extensive crops that have very few validation samples may have a skewed accuracy result depending on the number and nature of validation sample points. Revised crops and conditions were encoded using standard DWR land use codes added to feature attributes, and each modified classification is indicated by the value 'r' in the 'DWR_revised' data field. The value ‘n’ in the ‘DWR_REVISE’ data field indicates a Regional Office added a boundary and attributes where none was included in the Land IQ data set. Each polygon classification is consistent with DWR attribute standards, however some of DWR's traditional attribute definitions are modified and extended to accommodate unavoidable constraints within remote-sensing classifications, or to make data more specific for DWR's water balance computation needs. The original Land IQ classifications reported for each polygon are preserved for comparison, and are also expressed as DWR standard attributes. Comments, problems, improvements, updates, or suggestions about local conditions or revisions in the final data set should be forwarded to the appropriate Regional Office Senior Land Use Supervisor. Revisions were made if: - DWR corrected the original crop classification based on local knowledge and analysis, - young versus mature stages of perennial orchards and vineyards were identified (DWR added ‘Young’ to Special Condition attributes), - DWR determined that a field originally classified ‘Idle’ was actually cropped one or more times during the year, - the percent of cropped area was less than 100% of the original acres reported by Land IQ (values indicated in DWR ‘Percent’ column), - DWR determined that the field boundary should have been split to better reflect separate crops within the same polygon (‘Mixed’ was added to the MULTIUSE column; the crop classification and corresponding area percentages were indicated), - DWR determined that the crop was not irrigated. - DWR identified a distinct early or late crop on the field before the main season crop (‘Double’ was added to the MULTIUSE column); if the 1st and 2nd sequential crops occupied different portions of the total field acreage, the area percentages were indicated for each crop). DWR added Adjusted Day Of Year (ADOY) for peak NDVI date corresponding to CROPTYP category. The date received by Land IQ was delivered in a Julian date format (YYYYDDD) and was converted into the ADOY by DWR for statistical purposes. Land use boundaries delineated by Land IQ were not revised by DWR.

  10. Land Cover Classification (Aerial Imagery)

    • morocco.africageoportal.com
    • angola.africageoportal.com
    • +3more
    Updated Sep 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Land Cover Classification (Aerial Imagery) [Dataset]. https://morocco.africageoportal.com/content/c1bca075efb145d9a26394b866cd05eb
    Explore at:
    Dataset updated
    Sep 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Land cover describes the surface of the earth. Land-cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to the earth's surface is required. Land-cover classification is a complex exercise and is difficult to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.There are a few public datasets for land cover, but the spatial and temporal coverage of these public datasets may not always meet the user’s requirements. It is also difficult to create datasets for a specific time, as it requires expertise and time. Use this deep learning model to automate the manual process and reduce the required time and effort significantly.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band very high-resolution (10 cm) imagery.OutputClassified raster with the 8 classes as in the LA county landcover dataset.Applicable geographiesThe model is expected to work well in the United States and will produce the best results in the urban areas of California.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 84.8%. The table below summarizes the precision, recall and F1-score of the model on the validation dataset: ClassPrecisionRecallF1 ScoreTree Canopy0.8043890.8461520.824742Grass/Shrubs0.7199930.6272780.670445Bare Soil0.89270.9099580.901246Water0.9808850.9874990.984181Buildings0.9222020.9450320.933478Roads/Railroads0.8696370.8629210.866266Other Paved0.8114650.8119610.811713Tall Shrubs0.7076740.6382740.671185Training dataThis model has been trained on very high-resolution Landcover dataset (produced by LA County).LimitationsSince the model is trained on imagery of urban areas of LA County it will work best in urban areas of California or similar geography.Model is trained on limited classes and may lead to misclassification for other types of LULC classes.Sample resultsHere are a few results from the model.

  11. m

    Land Use (1999) 21 Categories (Feature Service)

    • gis.data.mass.gov
    • geo-massdot.opendata.arcgis.com
    • +1more
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). Land Use (1999) 21 Categories (Feature Service) [Dataset]. https://gis.data.mass.gov/items/79e33ad0f49d40ebac66f62eeb8af941
    Explore at:
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This MassGIS Land Use data layer has 21 land use classifications interpreted from 1999 1:25,000 aerial photography. Photointerpretation and automation were done by the Resource Mapping Project at the University of Massachusetts, Amherst. All land use categories were aggregated from 104 categories originally defined in 1971 by Professor William MacConnell at the Dept. of Forestry at UMass Amherst.Please see https://www.mass.gov/info-details/massgis-data-land-use-1951-1999 for more details.Map service also available.

  12. d

    Winter Season Habitat Categories for Greater Sage-grouse in Nevada and...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Winter Season Habitat Categories for Greater Sage-grouse in Nevada and northeastern California [Dataset]. https://catalog.data.gov/dataset/winter-season-habitat-categories-for-greater-sage-grouse-in-nevada-and-northeastern-califo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Nevada, California
    Description

    This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during the winter season, and is a surrogate for habitat conditions during periods of cold and snow. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Winter included telemetry locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection . Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014

  13. Functional Classification TDA

    • gis-fdot.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jul 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2017). Functional Classification TDA [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/5c629bc81b104fca8d937343cdcefe29
    Explore at:
    Dataset updated
    Jul 19, 2017
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    The FDOT GIS Functional Classification Roadways feature class provides spatial information on the assignment of roads into systems. The two-digit Functional Classification (FUNCLASS) code is used in Federal reports. FUNCLASS is the assignment of roadways into systems according to the character of service they provide in relation to the total roadway network. Florida uses the Federal Functional Classification System, which is common to all states. The original Florida Functional Classification System was eliminated in 1995 by the repeal of Chapter 335.04, F.S. The SHS is determined by mutual agreement and not by functional classification. FUNCLASS determines whether a roadway is STP or FA None, which determines funding categories. FEMA provides emergency funds for roadways that are not on the Federal Highway System. This is required for roadways On or Off the SHS that are NHS or functionally classified. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 03/22/2025.For more details please review the FDOT RCI Handbook Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/funclass.zip

  14. Mapper Surface Classification - Feature Service

    • statewide-geoportal-1-soa-dnr.hub.arcgis.com
    • gis.data.alaska.gov
    • +2more
    Updated Dec 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2024). Mapper Surface Classification - Feature Service [Dataset]. https://statewide-geoportal-1-soa-dnr.hub.arcgis.com/content/e0e3c0047ba141d992a7eee170e8123d
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Authors
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    The REST service page displays all data provided in this layer package: https://arcgis.dnr.alaska.gov/arcgis/rest/services/Mapper/Surface_Classification/FeatureServer

  15. a

    Building Point Classification - New Zealand

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated Sep 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2023). Building Point Classification - New Zealand [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/ebc54f498df94224990cf5f6598a5665
    Explore at:
    Dataset updated
    Sep 17, 2023
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into building and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Building is useful in applications such as high-quality 3D basemap creation, urban planning, and planning climate change response.Building could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Building in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.The model is trained with classified LiDAR that follows the The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 6 BuildingApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Auckland, Christchurch, Kapiti, Wellington Testing dataset - Auckland, WellingtonValidation/Evaluation dataset - Hutt City Dataset City Training Auckland, Christchurch, Kapiti, Wellington Testing Auckland, Wellington Validating HuttModel architectureThis model uses the SemanticQueryNetwork model architecture implemented in ArcGIS Pro.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.984921 0.975853 0.979762 Building 0.951285 0.967563 0.9584Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 75~%, Test: 25~%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-137.74 m to 410.50 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-17 to +17 Maximum points per block8192 Block Size50 Meters Class structure[0, 6]Sample resultsModel to classify a dataset with 23pts/m density Wellington city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story

  16. c

    SPU GIS Datasets

    • s.cnmilf.com
    • cos-data.seattle.gov
    • +3more
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cos-data.seattle.gov (2024). SPU GIS Datasets [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/spu-gis-datasets-2ddd8
    Explore at:
    Dataset updated
    Dec 16, 2024
    Dataset provided by
    cos-data.seattle.gov
    Description

    | https://data-seattlecitygis.opendata.arcgis.com/datasets?q=spu | Lifecycle status: Production | Purpose: to enable open access to SPU GIS data. This website includes many utility datasets from categories such as DSO, Drainage and Wastewater infrastructure, and Storm Infrastructure. Many of this datasets are linked from this website.

  17. c

    Freight Classification Yards

    • gis.data.ca.gov
    • data.ca.gov
    • +2more
    Updated Nov 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California_Department_of_Transportation (2021). Freight Classification Yards [Dataset]. https://gis.data.ca.gov/maps/19dfac13e17e45279d5c520c293ddef1_0
    Explore at:
    Dataset updated
    Nov 1, 2021
    Dataset authored and provided by
    California_Department_of_Transportation
    Area covered
    Description

    Classification yards and major switching facilities are rail yards used to separate cars onto multiple tracks.

  18. CGS Information Warehouse: Mineral Land Classification Maps (SMARA Study...

    • catalog.data.gov
    • data.cnra.ca.gov
    • +7more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2024). CGS Information Warehouse: Mineral Land Classification Maps (SMARA Study Areas) [Dataset]. https://catalog.data.gov/dataset/cgs-information-warehouse-mineral-land-classification-maps-smara-study-areas-f7b4e
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Conservationhttp://www.conservation.ca.gov/
    Description

    Mineral Land Classification studies are produced by the State Geologist as specified by the Surface Mining and Reclamation Act (SMARA, PRC 2710 et seq.) of 1975. To address mineral resource conservation, SMARA mandated a two-phase process called classification-designation. Classification is carried out by the State Geologist and designation is a function of the State Mining and Geology Board. The classification studies contained here evaluate the mineral resources and present this information in the form of Mineral Resource Zones. The objective of the classification-designation process is to ensure, through appropriate local lead agency policies and procedures, that mineral materials will be available when needed and do not become inaccessible as a result of inadequate information during the land-use decision-making process.

  19. S

    Raster classification and mapping of ecological units of Southern California...

    • data.subak.org
    • data.niaid.nih.gov
    • +2more
    csv
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of California, Davis (2023). Raster classification and mapping of ecological units of Southern California [Dataset]. https://data.subak.org/dataset/raster-classification-and-mapping-of-ecological-units-of-southern-california
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    University of California, Davis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Southern California, California
    Description

    For a series of studies on the ecosystem service values of chaparral in Southern California, we developed a raster data layer providing an ecological unit classification of the Southern California landscape. This raster dataset is at a 30 meter pixel resolution and partitions the landscape into 37 different ecological unit types. This dataset was derived through a GIS-based cluster analysis of 10 different physiographic variables, namely soil suborder type, terrain geomorphon type, flow accumulation, slope, solar irradiation, annual precipitation, annual minimum temperature, actual evapotranspiration, and climatic water deficit. This partitioning was based on physiographic variables rather than vegetation types because of the wish to have the ecological units reflect biophysical characteristics rather than the historical land use patterns that may influence vegetation. The cluster analysis was performed across a set of 10,000 points randomly placed on a GIS layer stack for the 10 variables. These random points were grouped into 37 discrete clusters using an algorithm called partitioning around medoids. This assignment of points to clusters was then used to train a random forest classifier, which in turn was run across the GIS stack to produce the output raster layer.

    This dataset is described in the following book chapter publication:

    Underwood, Emma C., Allan D. Hollander, Patrick R. Huber, and Charlie Schrader-Patton. 2018. "Mapping the Value of National Forest Landscapes for Ecosystem Service Provision." In Valuing Chaparral, 245–70. Springer Series on Environmental Management. Springer, Cham. https://doi.org/10.1007/978-3-319-68303-4_9.

  20. g

    U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2

    • data.globalchange.gov
    • datadiscoverystudio.org
    • +3more
    Updated Jan 19, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2 [Dataset]. https://data.globalchange.gov/dataset/usgs-gap-analysis-program-land-cover-data-v2-2167e5
    Explore at:
    Dataset updated
    Jan 19, 2012
    Description

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). SDOT GIS Datasets [Dataset]. https://gimi9.com/dataset/data-gov_sdot-gis-datasets-e011c

SDOT GIS Datasets

Explore at:
35 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 7, 2019
Description

The City of Seattle Transportation GIS Datasets | https://data-seattlecitygis.opendata.arcgis.com/datasets?t=transportation | Lifecycle status: Production | Purpose: to enable open access to SDOT GIS data. This website includes over 60 transportation-related GIS datasets from categories such as parking, transit, pedestrian, bicycle, and roadway assets. | PDDL: https://opendatacommons.org/licenses/pddl/ | The City of Seattle makes no representation or warranty as to its accuracy. The City of Seattle has created this service for our GIS Open Data website. We do reserve the right to alter, suspend, re-host, or retire this service at any time and without notice. | Datasets: 2007 Traffic Flow Counts, 2008 Traffic Flow Counts, 2009 Traffic Flow Counts, 2010 Traffic Flow Counts, 2011 Traffic Flow Counts, 2012 Traffic Flow Counts, 2013 Traffic Flow Counts, 2014 Traffic Flow Counts, 2015 Traffic Flow Counts, 2016 Traffic Flow Counts, 2017 Traffic Flow Counts, 2018 Traffic Flow Counts, Areaways, Bike Racks, Blockface, Bridges, Channelization File Geodatabase, Collisions, Crash Cushions, Curb Ramps, dotMaps Active Projects, Dynamic Message Signs, Existing Bike Facilities, Freight Network, Greater Downtown Alleys, Guardrails, High Impact Areas, Intersections, Marked Crosswalks, One-Way Streets, Paid Area Curbspaces, Pavement Moratoriums, Pay Stations, Peak Hour Parking Restrictions, Planned Bike Facilities, Public Garages or Parking Lots, Radar Speed Signs, Restricted Parking Zone (RPZ) Program, Retaining Walls, SDOT Capital Projects Input, Seattle On Street Paid Parking-Daytime Rates, Seattle On Street Paid Parking-Evening Rates, Seattle On Street Paid Parking-Morning Rates, Seattle Streets, SidewalkObservations, Sidewalks, Snow Ice Routes, Stairways, Street Design Concept Plans, Street Ends (Shoreline), Street Furnishings, Street Signs, Street Use Permits Use Addresses, Streetcar Lines, Streetcar Stations, Traffic Beacons, Traffic Cameras, Traffic Circles, Traffic Detectors, Traffic Lanes, Traffic Signals, Transit Classification, Trees.

Search
Clear search
Close search
Google apps
Main menu