Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication can be downloaded on an FCC page. Additionally, data files can be individually downloaded from the FCC Universal Licensing System data site. This data resource is intended to guide users toward the authoritative data source and to demonstrate at least one translation of that data into a spatial format.
The metadata for this translated dataset is here:
Antenna Structure Registration: antenna_structure_registration_mn.html
In addition, the Department of Homeland Security's Homeland Infrastructure Foundation - Level Data (HIFLD) program has an "Open Data" site, which includes a nationwide dataset on Cellular Towers derived from the FCC Universal Licensing System Database: https://hifld-geoplatform.opendata.arcgis.com/datasets/cellular-towers
Description Cellphone tower extract is a copy of the data found at https://ised-isde.canada.ca/site/spectrum-management-system/en/spectrum-management-system-data. Data is organized into a point layer of tower locations grouped by provider. All the providers transmitters are located in a table related by a unique TowerID.Dataset Usage General data layer for use when needed, for example to identify shortfalls in cell service for field work.Data Source Modified version of Innovation, Science and Economic Development Canada datasetData Criticality 1Sensitive Data NoCurator Greg SpiridonovCurator Job Title GIS SpecialistCurator Email greg.spiridonov@grey.caCurator Department IT / GISCurator Responsibilities Maintain,Oversight_Control_AccessMaintenance and Update Frequency MonthlyUpdate History New ZIP downloaded Nov 14 2023Published Map Service(s) https://gis.grey.ca/portal/home/item.html?id=718f08a731924856827f85178bb649cbPublicly Available Publicly availableOpen Data Published to Open DataOffline (sync) Not sure at this timeOther Comments Dataset relates to table GC_CellTower_TransmittersPermissionsAssign permissions to map service if published.Group PermissionsCurator Department ViewGrey County Staff ViewPublic View
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset represents cellular tower locations as recorded by the Federal Communications Commission This feature class serves as base information for use in GIS systems for general planning, analytical, and research purposes. It is not intended for engineering work or to legally define FCC licensee data or FCC market boundaries. The material in these data and text files are provided as-is. The FCC disclaims all warranties with regard to the contents of these files, including their fitness. In no event shall the FCC be liable for any special, indirect, or consequential damages whatsoever resulting from loss or use, data or profits, whether in connection with the use or performance of the contents of these files, action of contract, negligence, or other action arising out of, or in connection with the use of the contents of these files. It is known that there are some errors in the licensing information - Latitude, Longitude and Ground Elevation data as well as frequency assignment data from which these MapInfo files were generated.
Cellular Towers in the United StatesThis Homeland Infrastructure Foundation-Level Data (HIFLD) feature layer depicts cellular towers in the United States. According to the Federal Communications Commission (FCC), "Primary antennas for transmitting wireless telephone service, including cellular and Personal Communications Service (PCS), are usually located outdoors on towers, water tanks and other elevated structures like rooftops and sides of buildings. The combination of antenna towers andassociated electronic equipment is referred to as a 'cellular or PCS cell site' or 'base station.' Cellular or PCS cell site towers are typically 50-200 feet high."United States Cellular Operating Company LLCData currency: Current federal service (Cellular Towers New)Data modification: NoneFor more information: Tower and Antenna Siting; Cellular TowersSupport documentation: MetadataFor feedback, please contact: ArcGIScomNationalMaps@esri.comHomeland Infrastructure Foundation-Level DataPer HIFLD, "The Homeland Infrastructure Foundation-Level Data (HIFLD) Subcommittee was established…to address improvements in collection, processing, sharing, and protection of homeland infrastructure geospatial information across multiple levels of government, and to develop a common foundation of homeland infrastructure data to be used for visualization and analysis on all classification domains."
Cellular Phone Towers dataset current as of 2007. Serve as base information for use in GIS systems for general planning, analytical, and research purposes..
GapMaps GIS Data by Azira uses location data on mobile phones sourced by Azira which is collected from smartphone apps when the users have given their permission to track their location. It can shed light on consumer visitation patterns (“where from” and “where to”), frequency of visits, profiles of consumers and much more.
Businesses can utilise GIS data to answer key questions including:
- What is the demographic profile of customers visiting my locations?
- What is my primary catchment? And where within that catchment do most of my customers travel from to reach my locations?
- What points of interest drive customers to my locations (ie. work, shopping, recreation, hotel or education facilities that are in the area) ?
- How far do customers travel to visit my locations?
- Where are the potential gaps in my store network for new developments?
- What is the sales impact on an existing store if a new store is opened nearby?
- Is my marketing strategy targeted to the right audience?
- Where are my competitor's customers coming from?
Mobile Location data provides a range of benefits that make it a valuable GIS Data source for location intelligence services including: - Real-time - Low-cost at high scale - Accurate - Flexible - Non-proprietary - Empirical
Azira have created robust screening methods to evaluate the quality of Mobile location data collected from multiple sources to ensure that their data lake contains only the highest-quality mobile location data.
This includes partnering with trusted location SDK providers that get proper end user consent to track their location when they download an application, can detect device movement/visits and use GPS to determine location co-ordinates.
Data received from partners is put through Azira's data quality algorithm discarding data points that receive a low quality score.
Use cases in Europe will be considered on a case to case basis.
This dataset serves as base information for use in GIS systems for general planning, analytical, and research purposes. It is not intended for engineering work or to legally define FCC licensee data or FCC market boundaries. The material in these data and text files are provided as-is. The FCC disclaims all warranties with regard to the contents of these files, including their fitness. In no event shall the FCC be liable for any special, indirect, or consequential damages whatsoever resulting from loss or use, data, or profits, whether in connection with the use or performance of the contents of these files, action of contract, negligence, or other action arising out of, or in connection with the use of the contents of these files. It is known that there are some errors in the licensing information - Latitude, Longitude and Ground Elevation data as well as frequency assignment data from which these files were generated. Data source: Federal Communications Commission Data and details are hosted by HIFLD as received from the data provider.
Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication, extracted from the FCC Licensing Database, can be individually downloaded from the FCC GIS data site. Addiitonally, a full dataset download of all GIS files is packaged with an ArcExplorer(R) viewing capability for users who do not have full GIS capability.
This dataset represents federally regulated cellular towers in Carteret County, NC. The FAA Case Number, Registration Number, Status and elevation/height is reported including links to the Federal Communications Commission webpage for each cellular tower.
Cell Phone Towers Within Cattaraugus County
Detailed, building -specific assessment of indoor mobile signal strength and propagation across all licensed mobile operators in a given country. Signal values are provided for each H3-12 hexagon inside the building (resolution approx. 20 x 20 meters). The data is presented in GIS-compatible formats such as gpkg and geojson. The data is obtained using crowdsourced data and advanced geo-spatial algorithms and includes data on the presence of indoor coverage systems. This data can be purchased on a building-by-building basis
Typical data use cases are in the following sectors: - B2B telecommunications: assess indoor coverage quality to optimise deployment of mobile-dependent network services (e.g. SD-WAN, mobile backup, etc..). - Mobile telecoms: Mobile operators and indoor coverage solution providers (e.g. DAS providers) can use this data to identify buildings and building owners for the deployment of indoor coverage systems - Commercial real estate and property: ascertain the quality of indoor mobile coverage to ensure that tenants can actually conduct business in your premises
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CellphonePings
This dataset portrays cell tower locations as points in Allegheny County. The dataset is based on outbuilding codes in the Property Assessment Parcel Database used to identify cell towers for tax year 2016.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.
GapMaps GIS Data by Azira provides actionable insights on consumer travel patterns at a global scale empowering Marketing and Operational Leaders to confidently reach, understand, and market to highly targeted audiences and optimize their business results.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset represents cellular tower locations as recorded by the Federal Communications Commission This feature class serves as base information for use in GIS systems for general planning, analytical, and research purposes. It is not intended for engineering work or to legally define FCC licensee data or FCC market boundaries. The material in these data and text files are provided as-is. The FCC disclaims all warranties with regard to the contents of these files, including their fitness. In no event shall the FCC be liable for any special, indirect, or consequential damages whatsoever resulting from loss or use, data or profits, whether in connection with the use or performance of the contents of these files, action of contract, negligence, or other action arising out of, or in connection with the use of the contents of these files. It is known that there are some errors in the licensing information - Latitude, Longitude and Ground Elevation data as well as frequency assignment data from which these MapInfo files were generated.
This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.
Homeland Infrastructure Foundation-Level Data (HIFLD) geospatial data sets containing information on Mobile Home Parks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
5G cellular antennas operated by AT&T, Verizon, or Mobilitie. The City of San Jose rents street light poles to telecom companies for their 5G technology antennas to provide faster and better wireless data coverage.
Data is published on Mondays on a weekly basis.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This file contains two items. First, the complete wireframes in Adobe XD format for the development of a GIS-Based mobile application for flood risk preparedness. Second, a video presenting the potential look and functioning of the iTYSA flood preparedness app with a mock-up created by Abby Muricho Onencan. The mock-up was created with Adobe XD and the demonstration was created with an inbuilt functionality for Adobe XD to develop videos.
Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication can be downloaded on an FCC page. Additionally, data files can be individually downloaded from the FCC Universal Licensing System data site. This data resource is intended to guide users toward the authoritative data source and to demonstrate at least one translation of that data into a spatial format.
The metadata for this translated dataset is here:
Antenna Structure Registration: antenna_structure_registration_mn.html
In addition, the Department of Homeland Security's Homeland Infrastructure Foundation - Level Data (HIFLD) program has an "Open Data" site, which includes a nationwide dataset on Cellular Towers derived from the FCC Universal Licensing System Database: https://hifld-geoplatform.opendata.arcgis.com/datasets/cellular-towers