Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Hills of Governor's Island Dataset for GRASS GIS
This geospatial dataset contains raster and vector data for the Hills region of Governor's Island, New York City, USA. The top level directory governors_island_hills_for_grass is a GRASS GIS location for NAD_1983_StatePlane_New_York_Long_Island_FIPS_3104_Feet in US Surveyor's Feet with EPSG code 2263. Inside the location there is the PERMANENT mapset, a license file, data record, readme file, workspace, color table, category rules, and scripts for data processing. This dataset was created for the course GIS for Designers.
Instructions
Install GRASS GIS, unzip this archive, and move the location into your GRASS GIS database
directory. If you are new to GRASS GIS read the first time users guide.
Data Sources
Maps
License
This dataset is licensed under the ODC Public Domain Dedication and License 1.0 (PDDL) by Brendan Harmon.
This is GIS course announcement flier.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore the concepts, principles, and practices of acquiring, storing, analyzing, displaying, and using geospatial data. Additionally, you will investigate the science behind geographic information systems and the techniques and methods GIS scientists and professionals use to answer questions with a spatial component. In the lab section, you will become proficient with the ArcGIS Pro software package.
This course will prepare you to take more advanced geospatial science courses.
You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises, assignments, and less guided challenges. Please see the sequencing document for our suggestions as to the order in which to work through the material. To aid in working through the lecture modules, we have provided PDF versions of the lectures with the slide notes included. This course makes use of the ArcGIS Pro software package from the Environmental Systems Research Institute (ESRI), and directions for installing the software have also been provided. If you are not a West Virginia University student, you can still complete the labs, but you will need to obtain access to the software on your own.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
GIS spatial data for Certificates of Immunity. Certificates of Immunity are represented by a polygon defining the extent of the area covered by the Certificate.
The Secretary of State may, on the application of any person, issue a certificate stating that the Secretary of State does not intend to list a building situated in England.
The issue of such a certificate in respect of a building shall –
(a) preclude the Secretary of State for a period of 5 years from the date of issue from exercising in relation to that building any of the powers conferred on him by section 1; and
(b) preclude the local planning authority for that period from serving a building preservation notice in relation to it.
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Certificate of Occupancy
Get an introduction to the basic components of a GIS. Learn fundamental concepts that underlie the use of a GIS with hands-on experience with maps and geographic data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification.
The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively.
After completing this seminar you will be able to:
Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains locations and attributes of Golf Courses, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies.
Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
This feature class represents locations of properties that should have elevation certificates in Baltimore County. The points were compiled based on the address information provided on the certificate or other source material. Scanned copies of elevation certificates and other relevant documents are stored in the database as attachments. The attached documents are in PDF format.
https://www.scottsdaleaz.gov/AssetFactory.aspx?did=69351https://www.scottsdaleaz.gov/AssetFactory.aspx?did=69351
Please click here to view the Data Dictionary, a description of the fields in this table.Certificates of Occupancy issued by the City of Scottsdale.
This document is an Elevation Certificate that represents the given Address listed in the title of the document. Some may vary in appearance due to age and documentation updates.
This layer includes only building footprints where final elevation certificates are available, with all elevations reported in NAVD 1988. Where necessary, conversions from NGVD 1929 to NAVD 1988 were completed using the VERTCON v2.1 program (NOAA NGS, 2018). Elevation certificates were collected from the following 10 localities: (1)Chesapeake, (2)Franklin, (3)Hampton, (4)James City County, (5)Newport News, (6)Norfolk, (7)Portsmouth, (8)Southampton County, (9)Virginia Beach, and (10)York County. All elevation certificate information was entered by HRPDC staff. Localities included in the current inventory were able to provide digital elevation certificate copies. This inventory is not complete for the region, and elevation certificates will continue to be added to the database when available. Building footprints are courtesy of VGIN map service and locality GIS departments. Building attributes and parcels are courtesy of the Hampton Roads Regional Parcels layer and locality GIS departments. Current flood zones are courtesy of the FEMA National Flood Hazard Layer, with base flood elevations reported in NAVD 1988 where available. Created 2/8/2019
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains two Microsoft Excel documents:A quiz with eight questions, assigned to students in a graduate-level GIS programming course as part of Homework Assignment 2. The quiz assesses students' understanding of basic Python programming principles (such as loops and conditional statements).An Excel document with three worksheets, each corresponding to one homework assignment from the same graduate GIS programming course. The document includes self-reported background information (e.g., students' prior programming experience), details about the use of various resources (e.g., websites) for completing assignments, the perceived helpfulness of these resources, and scores for the homework assignments and quizzes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.