Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar discusses the five common business patterns of GIS implementation (asset management, planning and analyis, field mobility, operational awareness, and citizen engagement), and how to address these patterns with the ArcGIS system and free applications on the Resource Center.
The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar discusses the five common business patterns of GIS implementation (asset management, planning and analyis, field mobility, operational awareness, and citizen engagement), and how to address these patterns with the ArcGIS system and free applications on the Resource Center.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The goal of the Lead Safe Certificate program is to prevent lead poisoning by ensuring that all rental homes built prior to 1978 are compliant with the city's Lead Safe Ordinance and maintained free of lead hazards.Any home built before 1978 is reasonably presumed to contain lead-based paint. Residential rental units built before 1978 must have a Lead Safe Certification from the City of Cleveland’s Department of Building and Housing.The Lead Safe Certification is only valid for two years, after which rental property owners must re-apply for certification.For more information about the City's Lead Safe Certification program, please visit this Building & Housing page.RelatedLead Safe Certificate ExplorerData GlossaryCOLUMN | DESCRIPTIONRECORD_ID | Unique ID produced by the Accela system.STATUS | Status of the certificate. IS_ACTIVE | Flag that is true if the certificate has a status of Certified, Active, About to Expire, or Exempt, all of which indicate that the associated property is lead safe. All other statuses are coded as false.RECORD_FILE_DATE | Date when the certificate was originally filed.RENTAL_REG_ID | ID of the associated rental registration record in Accela.RENEWAL_RECORD_ID | ID of an associated renewal record in Accela, if applicable.RENEWAL_RECORD_FILE_DATE | File date of the renewal, if applicable.STATUS_DATE | Time of last status update for the certificate.EXPIRATION_DATE | Date on which the certificate will expire.PrimaryAddress | Primary address associated with the certificate.PrimaryAddressZip | Zip code in the primary address.YEAR_BUILT | Year the associated building was constructed.TOTAL_UNITS | Total units in the building associated with the certificate.TOTAL_UNITS_INSPECTED | Total units inspected.INSPECTION_TYPE | Type of inspection.INSPECTION_DATE | Date of inspection. INVESTIGATOR_CERTIFICATION_ID | ID of the investigator who conducted the inspection.REVIEW_DATE | Date of last review.ACCELA_CITIZEN_ACCESS_URL | Link to the record in the Accela Citizen Access portal.DW_Parcel | Associated parcel number. DW_Ward | Associated ward (pre-2025 boundaries).DW_Tract2020 | 2020 Census tract.DW_Neighborhood | Neighborhood.IS_GEOLOCATED | True if the City's geocoder could locate the address. False otherwise.ContactCity of Cleveland, Building and Housing Lead Compliance ProgramUpdate FrequencyWeekly on Sundays at 7 AM EST (6 AM during daylight savings)
The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Free and reduced lunch data for each participating public school in Alaska. This data set includes the number of students receiving free lunches and reduced price lunches, and the percentage of the students enrolled in either of these programs. Students qualify for free and reduced meals under the National School Lunch Program.Where possible the data is mapped at the location of School that is associated with the program - however some data rows represent non-school entities. See source DEED data center https://education.alaska.gov/cnp/nslp for source dataSource: Alaska Department of Education & Early Development, School Nutrition Programs
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Download - Land cover of United Republic of Tanzania - Shape file format
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.
This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows: Green (fast): 85 - 100% of free flow speeds Yellow (moderate): 65 - 85% Orange (slow); 45 - 65% Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
Number of students enrolled in free and reduced lunch programs by school district. Students qualify for free and reduced meals under the National School Lunch Program.GIS layers for individual years can be accessed using the Build Your Own Map application.*Mount Edgecumbe High School is a state-operated boarding school, and is therefore not included in a school district. This school is included in Alaska DCCED DCRA Data Portal school-scale education data.Source: Alaska Department of Education & Early DevelopmentThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development School Nutrition Programs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How do you ensure your data is free of errors? While you may already leverage ArcGIS Data Reviewer for its automated validation capabilities, you might ocassionally encounter problems with certain challenging subsets of features. For example, think about a situation in which you expected an automated data check to return a certain error but it did not. You tried configuring the check over and over again, but did not figure out a method of automatically detecting the error.Visual review can help. Manually reviewing your data provides a way to find errors that are difficult to detect using automated methods, such as features that are missing, misplaced, miscoded, or redundant.The following graphic shows the topics that will be covered throughout the course. You will learn the associated workflows that take advantage of ArcGIS Data Reviewer functionality.After completing this course, you will be able to:Determine situations in which visual review is appropriate.Analyze a statistically significant sample.Create a QC grid and perform a systematic visual review.Indicate missing, misplaced, miscoded, or redundant features.Recognize how to find changes between versions.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows:
This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application.
The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale.
In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info.
The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics).
For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info.
Details on the source data can be found in the xml file associated with data layer.
Data in this release
*ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology
*ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework
*ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology
*Georeferenced Queensland geology map, gravity and magnetic images
*Queensland geology map, structural framework and schematic diagram PDF files
*Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94
Accessing the data
Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites").
Metadata
Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders.
Disclaimer
The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites.
Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination.
The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason.
The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way.
WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties.
Please view the 'readme.html' and 'licence.html' file for further, more complete information
Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statewide soil and land information can be discovered and viewed through eSPADE or SEED. Datasets include soil profiles, soil landscapes, soil and land resources, acid sulfate soil risk mapping, hydrogeological landscapes, land systems and land use. There are also various statewide coverages of specific soil and land characteristics, such as soil type, land and soil capability, soil fertility, soil regolith, soil hydrology and modelled soil properties.
Both eSPADE and SEED enable soil and land data to be viewed on a map. SEED focuses more on the holistic approach by enabling you to add other environmental layers such as mining boundaries, vegetation or water monitoring points. SEED also provides access to metadata and data quality statements for layers.
eSPADE provides greater functions and allows you to drill down into soil points or maps to access detailed information such as reports and images. You can navigate to a specific location, then search and select multiple objects and access detailed information about them. You can also export spatial information for use in other applications such as Google Earth™ and GIS software.
eSPADE is a free Internet information system and works on desktop computers, laptops and mobile devices such as smartphones and tablets and uses a Google maps-based platform familiar to most users. It has over 42,000 soil profile descriptions and approximately 4,000 soil landscape descriptions. This includes the maps and descriptions from the Soil Landscape Mapping program. eSPADE also includes the base maps underpinning Biophysical Strategic Agricultural Land (BSAL).
For more information on eSPADE visit: https://www.environment.nsw.gov.au/topics/land-and-soil/soil-data/espade
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.