Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
Facebook
TwitterThrough the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant _location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
Facebook
TwitterSeattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Facebook
TwitterPrior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
Facebook
TwitterEsri UK is providing a digital mapping platform and expertise in biodiversity mapping for the National Education Nature Park. We are providing the Department of Education with ArcGIS Online - an extensible web-based mapping platform to provide staff and students with geospatial tools that will allow them to view, capture, store, analyse and monitor environmental and biodiversity data. We are also providing Professional Services to be delivered using an agile methodology, along with training to key stakeholders.To deploy geospatial tools to all schools, we are using the existing ArcGIS for Schools program.
Facebook
TwitterLANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This course demonstrates how to select, modify, create, and share web applications using ArcGIS Online. ArcGIS Online offers many different options for creating web applications that share web maps, web scenes, and spatial functions. But how do you decide which web application best meets your requirements? Each web application option implements different functions and showcases a specific look and feel. You can choose a web application that meets your organization's functional requirements, apply your organization's look and feel, and share your web map without writing any code.Two workflows will be introduced for creating web applications using ArcGIS Online:Applying your web map to an existing template applicationCreating your own web application using Web AppBuilder for ArcGISAfter completing this course, you will be able to do the following:Identify the components of a web application.Create a web application from an existing configurable app template.Create a web application using Web AppBuilder for ArcGIS.Use ArcGIS Online to deploy a web application.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The spatial analysis software market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market's value is estimated at $5 billion in 2025, demonstrating significant expansion from its historical period (2019-2024). A Compound Annual Growth Rate (CAGR) of 15% is projected from 2025 to 2033, indicating a substantial market expansion to an estimated $15 billion by 2033. Key drivers include the rising need for location intelligence in business decision-making, the increasing availability of geospatial data, and advancements in cloud computing and artificial intelligence (AI) that enhance spatial analysis capabilities. Furthermore, the integration of spatial analysis with other technologies, such as big data analytics and machine learning, is fostering innovation and expanding applications across various industries. The market is segmented by application (e.g., urban planning, environmental monitoring, transportation logistics) and by software type (e.g., GIS software, remote sensing software, spatial statistics software). Leading companies are continuously investing in research and development, leading to the emergence of more sophisticated and user-friendly solutions. Market restraints include the high cost of software licenses and implementation, the complexity of using advanced spatial analysis tools, and the shortage of skilled professionals capable of effectively leveraging these technologies. However, the expanding availability of open-source spatial analysis tools and online training programs is gradually mitigating these barriers. The regional breakdown shows strong growth across North America and Europe, fueled by significant technological advancements and substantial public and private sector investments. The Asia-Pacific region is also poised for significant expansion, driven by rapid urbanization and economic growth. The consistent growth across different segments and regions ensures long-term market stability and offers significant opportunities for both established players and new entrants. The continued convergence of spatial analysis with other technologies will remain a central theme, driving innovation and unlocking further value across numerous sectors.
Facebook
TwitterArcGIS Living Atlas of the World is a rich and growing collection of valuable geographic maps and data from organizations around the globe. Access to Living Atlas content is part of your ArcGIS Online organizational subscription. In this course, you will discover and use Living Atlas maps and layers that are ready to use for instruction. You will explore ways to connect Living Atlas content to the subjects that you teach.
Facebook
TwitterSONG, Carol X., Rosen Center for Advanced Computing, Purdue University, 155 South Grant Street, Young Hall, West Lafayette, IN 47907
Science gateways are becoming an integral component of modern collaborative research. They find widespread adoption by research groups to share data, code and tools both within a project and with the broader community. Sustainability beyond initial funding is a significant challenge for a science gateway to continue to operate, update and support the communities it serves. MyGeoHub.org is a geospatial science gateway powered by HUBzero. MyGeoHub employs a business model of hosting multiple research projects on a single HUBzero instance to manage the gateway operations more efficiently and sustainably while lowering the cost to individual projects. This model allows projects to share the gateway’s common capabilities and the underlying hardware and other connected computing resources, and continued maintenance of their sites even after the original funding has run out allowing time for acquiring new funding. MyGeoHub has hosted a number of projects, ranging from hydrologic modeling and data sharing, plant phenotyping, global and local sustainable development, climate variability impact on crops, and most recently, modeling of industry processes to improve reuse and recycling of materials. The shared need to manage, visualize and process geospatial data across the projects has motivated the Geospatial Data Building Blocks (GABBs) development funded by NSF DIBBs. GABBs provides a “File Explorer” type user interface for managing geospatial data (no coding is needed), a builder for visualizing and exploring geo-referenced data without coding, a Python map library and other toolkits for building geospatial analysis and computational tools without requiring GIS programming expertise. GABBs can be added to an existing or new HUBzero site, as is the case on MyGeoHub. Teams use MyGeoHub to coordinate project activities, share files and information, publish tools and datasets (with DOI) to provide not only easy access but also improved reuse and reproducibility of data and code as the interactive online tools and workflows can be used without downloading or installing software. Tools on MyGeoHub have also been used in courses, training workshops and summer camps. MyGeoHub is supporting more than 8000 users annually.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is valued to increase USD 2.35 billion, at a CAGR of 15.7% from 2024 to 2029. Increased use of GIS for capacity planning will drive the GIS in telecom sector market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 28% growth during the forecast period.
By Product - Software segment was valued at USD 470.60 billion in 2023
By Deployment - On-premises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 256.91 million
Market Future Opportunities: USD 2350.30 million
CAGR from 2024 to 2029: 15.7%
Market Summary
The market is experiencing significant growth as communication companies increasingly adopt Geographic Information Systems (GIS) for network planning and optimization. Core technologies, such as satellite imagery and location-based services, are driving this trend, enabling telecom providers to improve network performance and customer experience. One major application of GIS in the telecom sector is capacity planning, which allows companies to optimize their network infrastructure based on real-time data.
However, the integration of GIS with big data and other advanced technologies presents a communication gap between developers and end-users, requiring a focus on user-friendly interfaces and training programs. Additionally, regulatory compliance and data security remain significant challenges for the market. Despite these hurdles, the opportunities for innovation and improved operational efficiency make the market an exciting and evolving space.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the GIS In Telecom Sector Market Segmented ?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The global telecom sector's reliance on Geographic Information Systems (GIS) continues to expand, with the market for GIS in telecoms projected to grow significantly. According to recent industry reports, the market for GIS data visualization and spatial data infrastructure in telecoms has experienced a notable increase of 18.7% in the past year. Furthermore, the demand for advanced spatial analysis tools, such as building penetration analysis, geospatial asset management, and work order management systems, has risen by 21.3%. Telecom companies utilize GIS for network performance monitoring, data integration platforms, and network planning. For instance, GIS enables network design, radio frequency interference analysis, route optimization software, mobile network optimization, signal propagation modeling, and service area mapping.
Request Free Sample
The Software segment was valued at USD 470.60 billion in 2019 and showed a gradual increase during the forecast period.
Additionally, it plays a crucial role in infrastructure management, location-based services, emergency response planning, maintenance scheduling, and telecom network design. Moreover, the adoption of 3D GIS modeling, LIDAR data processing, and customer location mapping has gained traction, contributing to the market's expansion. The future outlook is promising, with industry experts anticipating a 25.6% increase in the use of GIS for telecom network capacity planning and telecom outage prediction. These trends underscore the continuous evolution of the market and its applications across various sectors.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 28% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How GIS In Telecom Sector Market Demand is Rising in APAC Request Free Sample
In China, the construction of smart cities in Qingdao, Hangzhou, and Xiamen, among others, is driving the demand for Geographic Information Systems (GIS) in various sectors. By 2025, China aims to build more smart cities, leading to significant growth opportunities for GIS companies. Esri Global Inc., a leading player
Facebook
TwitterThis layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We are sharing all urban big data we have for the old city of Beijing (around 62 sqkm in area). The inventory and GIS layers are as follows.To access these data, please join our online MOOC course BIG DATA AND URBAN PLANNING and they are available for downloading when you have registered the course in the below link.URL: http://www.xuetangx.com/courses/course-v1:TsinghuaX+70000662+2019_T1/aboutI would suggest you cite the following papers as a courtesy for using our data.Long Y. Redefining Chinese city system with emerging new data[J]. Applied Geography, 2016, 75: 36-48.
Facebook
TwitterUsers should note that there is a shift in the position of quad sheet boundaries between NAD27 and NAD83 and should choose the appropriate quad boundaries for their mapping needs.
Facebook
Twitter
According to our latest research, the global conservation biology field courses market size in 2024 stands at USD 1.42 billion, reflecting the expanding emphasis on environmental education and field-based learning worldwide. The market is experiencing a robust growth trajectory, with a compound annual growth rate (CAGR) of 7.3% projected from 2025 to 2033. By the end of 2033, the market is expected to reach USD 2.68 billion. This notable growth is primarily driven by increasing demand for experiential learning, the critical need for biodiversity conservation, and the integration of technology in field education.
One of the primary growth factors for the conservation biology field courses market is the rising global awareness about biodiversity loss and climate change. As environmental challenges become more complex and urgent, educational institutions, NGOs, and governmental agencies are prioritizing hands-on learning experiences that equip participants with practical conservation skills. This shift toward field-based education is further supported by international frameworks such as the United Nations’ Sustainable Development Goals (SDGs), which emphasize the importance of education in achieving environmental sustainability. Consequently, both undergraduate and graduate programs are increasingly incorporating field courses into their curricula, resulting in heightened enrollment rates and expanding market opportunities.
Another significant driver is the evolution of pedagogical approaches in conservation science. There is a growing recognition that classroom-based theoretical instruction alone is insufficient to address real-world conservation challenges. Field courses provide immersive experiences that foster critical thinking, problem-solving, and collaboration among participants. This educational transformation is not limited to universities; professional development programs and short-term workshops are also gaining traction among early-career scientists, conservation practitioners, and policy makers. The adoption of hybrid and online delivery modes has further democratized access, enabling participants from remote or underserved regions to engage in high-quality field-based learning.
Technological advancements also play a pivotal role in shaping the conservation biology field courses market. The integration of digital tools such as GIS mapping, remote sensing, and mobile data collection platforms has revolutionized fieldwork, making it more efficient and data-driven. These innovations enhance the learning experience, allowing students and professionals to analyze complex ecological data in real time and contribute meaningfully to ongoing conservation projects. Moreover, partnerships between academic institutions, research organizations, and technology providers are fostering the development of cutting-edge curricula that address current and emerging conservation issues, further fueling market growth.
From a regional perspective, North America and Europe currently dominate the conservation biology field courses market, accounting for over 60% of the global market share in 2024. These regions benefit from well-established educational infrastructures, strong funding support, and a mature ecosystem of conservation organizations. However, the Asia Pacific region is emerging as a significant growth engine, driven by rapid biodiversity loss, increasing governmental investment in environmental education, and the expansion of international collaborations. Latin America and the Middle East & Africa are also witnessing rising interest, particularly in areas with high conservation value and pressing ecological challenges. This regional diversity presents unique opportunities for market players to tailor their offerings to local needs and contexts.
The course type segment in the conservation biology field courses market is broadly categorized into undergraduate, graduate, professional development, and short-te
Facebook
TwitterTable from the American Community Survey (ACS) 5-year series on education enrollment and attainment related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B14007/B14002 School Enrollment, B15003 Educational Attainment. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
Facebook
TwitterTable from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.