Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
Facebook
TwitterThrough the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterBuilding a resource locator in ArcGIS Online (video).View this short demonstration on how to build a simple resource locator in ArcGIS Online. In this demonstration the presenter publishes an existing Web Map to the Local Perspective configurable application template. The resulting application includes the ability to locate and navigate to different health resources that would be critical in managing a surge of displaced people related to a significant event impacting public health._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
Facebook
TwitterThe Civil Engineering Students Society organized an 'ArcGIS Online Training for Beginners.' Geographical Information System (GIS) technology provides the tools for creating, managing, analyzing, and visualizing data associated with developing and managing infrastructure.
It also allowed civil engineers to manage and share data, turning it into easily understood reports and visualizations that could be analyzed and communicated to others. Additionally, it helped civil engineers in spatial analysis, data management, urban development, town planning, and site analysis.
It is equally important for beginner geospatial students.
Facebook
TwitterSeattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This file provides the raw data of an online survey intended at gathering information regarding remote sensing (RS) and Geographical Information Systems (GIS) for conservation in academic education. The aim was to unfold best practices as well as gaps in teaching methods of remote sensing/GIS, and to help inform how these may be adapted and improved. A total of 73 people answered the survey, which was distributed through closed mailing lists of universities and conservation groups.
Facebook
TwitterLANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)
Facebook
TwitterLab 4 GIST 603A Introductin to ArcGIS Online University of Arizona MS GIST programLab 4 – ArcGIS OnlineArcGIS Online is a simple cloud-based utility for producing, editing, and sharing geospatial data. Designed by ESRI, the makers of the popular ArcGIS software suite, ArcGIS Online is meant to act as a Web-based mapping solution for everyone from GIS professionals to those with no formal GIS training.ArcGIS Online allows you to:Upload and manipulate dataMap points, lines and areasCreate point, cloropleth, and other thematic mapsEmbed maps in Web sitesShare maps in a multitude of waysView maps on mobile devices
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterEssential configurations for highly scalable ArcGIS Online web apps (ArcGIS Blog).Learn best practices for configuring web applications that receive a high amount of web traffic, use a quick checklist focus on critical settings._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Air, Water, and Aquatic Environments (AWAE) research program is one of eight Science Program areas within the Rocky Mountain Research Station (RMRS). Our science develops core knowledge, methods, and technologies that enable effective watershed management in forests and grasslands, sustain biodiversity, and maintain healthy watershed conditions. We conduct basic and applied research on the effects of natural processes and human activities on watershed resources, including interactions between aquatic and terrestrial ecosystems. The knowledge we develop supports management, conservation, and restoration of terrestrial, riparian and aquatic ecosystems and provides for sustainable clean air and water quality in the Interior West. With capabilities in atmospheric sciences, soils, forest engineering, biogeochemistry, hydrology, plant physiology, aquatic ecology and limnology, conservation biology and fisheries, our scientists focus on two key research problems: Core watershed research quantifies the dynamics of hydrologic, geomorphic and biogeochemical processes in forests and rangelands at multiple scales and defines the biological processes and patterns that affect the distribution, resilience, and persistence of native aquatic, riparian and terrestrial species. Integrated, interdisciplinary research explores the effects of climate variability and climate change on forest, grassland and aquatic ecosystems. Resources in this dataset:Resource Title: Projects, Tools, and Data. File Name: Web Page, url: https://www.fs.fed.us/rm/boise/AWAE/projects.html Projects include Air Temperature Monitoring and Modeling, Biogeochemistry Lab in Colorado, Rangewide Bull Trout eDNA Project, Climate Shield Cold-Water Refuge Streams for Native Trout, Cutthroat trout-rainbow trout hybridization - data downloads and maps, Fire and Aquatic Ecosystems science, Fish and Cattle Grazing reports, Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams, GRAIP_Lite - Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams, IF3: Integrating Forests, Fish, and Fire, National forest climate change maps: Your guide to the future, National forest contributions to streamflow, The National Stream Internet network, people, data, GIS, analysis, techniques, NorWeST Stream Temperature Regional Database and Model, River Bathymetry Toolkit (RBT), Sediment Transport Data for Idaho, Nevada, Wyoming, Colorado, SnowEx, Stream Temperature Modeling and Monitoring, Spatial Statistical Modeling on Stream netowrks - tools and GIS downloads, Understanding Sculpin DNA - environmental DNA and morphological species differences, Understanding the diversity of Cottusin western North America, Valley Bottom Confinement GIS tools, Water Erosion Prediction Project (WEPP), Great Lakes WEPP Watershed Online GIS Interface, Western Division AFS - 2008 Bull Trout Symposium - Bull Trout and Climate Change, Western US Stream Flow Metric Dataset
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset is OBSOLETE as of 11/18/2024 and will be removed from ArcGIS Online on 11/18/2025.An updated version of this dataset is available at Certified Sustainable Buildings | Open Data Portal | City of Cambridge.A map of the updated data can be found in two places:Certified Sustainable Buildings Map | Open Data Portal | City of CambridgeSustainable Buildings Map - City of Cambridge, MAThis point layer shows the location of sustainable buildings in Cambridge. For inclusion in this layer, a building must do at least one of the following: qualify for the City’s Article 22 regulatory process; be certified by Passive House; be certified by Enterprise Green Communities; or be certified by LEEDunder a LEED version that requires the whole building to meet sustainability standards. Some buildings meet two or more of these criteria. Additionally, this layer contains information about other certifications (Energy Star, Fitwel, and WELL) that may apply to the included buildings. If an included building participates in the City’s BEUDO regulatory process, this layer provides two key emissions figures for the building. Information provided about the applicable sustainable building programs for qualifying buildings includes certification levels, certification types, ratings, or scores. This layer includes data from City and non-City sources.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription BldgID type: Stringwidth: 50precision: 0 Unique ID for database from GIS.
Latitude type: Doublewidth: 8precision: 38 Geographic coordinate from GIS Bldg ID centroid file.
Longitude type: Doublewidth: 8precision: 38 Geographic coordinate from GIS Bldg ID centroid file.
Article22_SystemLevelEquivalenc type: Stringwidth: 150precision: 0
Article22 type: Stringwidth: 3precision: 0 "Yes" indicates Article 22 building.
BEUDO_TotalGHGEmissionsIntensit type: Doublewidth: 8precision: 38
BEUDO type: Stringwidth: 3precision: 0 "Yes" indicates BUEDO building.
BEUDO_SourceEUI type: Doublewidth: 8precision: 38 A critical variable for reporting about BEUDO.
EnergyStar type: Stringwidth: 3precision: 0 "Yes" indicates EnergyStar building.
EnergyStar_CountYearsCert type: SmallIntegerwidth: 2precision: 5 Number of years certified. EnergyStar certification may be renewed annually.
EnergyStar_LastYearCert type: Stringwidth: 4precision: 0 Year of last certification.
EnergyStar_LastCertScore type: SmallIntegerwidth: 2precision: 5 Most recent EnergyStar score.
EnterpriseGC type: Stringwidth: 3precision: 0 "Yes" indicates Enterprise Green Communities building.
EnterpriseGC_CertTemplate type: Stringwidth: 100precision: 0 Certification version.
EnterpriseGC_PointsAchieved type: SmallIntegerwidth: 2precision: 5 Enterprise Green Communities score.
Fitwel type: Stringwidth: 3precision: 0 "Yes" indicates Fitwel building.
Fitwel_StarRating type: SmallIntegerwidth: 2precision: 5 Numerical Fitwel rating.
LEED type: Stringwidth: 3precision: 0 "Yes" indicates LEED building.
LEED_TotalCerts type: SmallIntegerwidth: 2precision: 5 Number of certifications applying to the whole building. The LEED fields contain details about certifications that are "whole-building," not referring to one part of the building only or or to building operations.
LEED_LastCertDate type: Datewidth: 8precision: 0 Date of last certification applying to the whole building.
LEED_LastSystemVersion type: Stringwidth: 100precision: 0 Certification version and rating system.
LEED_LastCertLevel type: Stringwidth: 50precision: 0 LEED certifictation level at which whole building is certified. Certified/Silver/Gold/Platinum: Does not not include "registered" buildings.
PassiveHouse type: Stringwidth: 3precision: 0 "Yes" indicates Passive House building.
PassiveHouse_CertVersion type: Stringwidth: 100precision: 0 Certification version.
WELL type: Stringwidth: 3precision: 0 "Yes" indicates WELL building.
WELL_Version type: Stringwidth: 50precision: 0 Certification version.
WELL_ProjectType type: Stringwidth: 150precision: 0 WELL project type.
WELL_CertLevel type: Stringwidth: 50precision: 0 Certification level. Certified Pilot/Compliance/Bronze/Silver/Gold/Platinum or Health-Safety Rated: Does not include "registered" or "precertified" buildings.
created_date type: Datewidth: 8precision: 0
last_edited_date type: Datewidth: 8precision: 0
Facebook
TwitterThe Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WSDOT template for Esri file geodatabase polygon feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tutorial Audience: GIS / Technology SpecialistsEnd User Audience: Emergency Management Planning and Operations StaffProblem: Your County Emergency Management Agency is planning a training exercise and wants to make use of “Web GIS.” Typically, they have you print out a new wall map each operational period and the status of facilities (e.g. shelters) are maintained in spreadsheets. This time they want to coordinate planning and operations across multiple locations, with everyone having the most up to date information on a live map. For example, they want to be able update the status of evacuation zones and shelters without requiring GIS expertise. Can you provide them with a web app that gives them some simple tools and just the layers they need to get started? Use a simulated flood or any other incident type to guide you through this process.Solution: Operations Response AppRequirements: You will need a license for ArcGIS Pro and ArcGIS Online to complete this tutorial.Note: This application is used with the Public Information Application Tutorial.
Facebook
TwitterEsri UK is providing a digital mapping platform and expertise in biodiversity mapping for the National Education Nature Park. We are providing the Department of Education with ArcGIS Online - an extensible web-based mapping platform to provide staff and students with geospatial tools that will allow them to view, capture, store, analyse and monitor environmental and biodiversity data. We are also providing Professional Services to be delivered using an agile methodology, along with training to key stakeholders.To deploy geospatial tools to all schools, we are using the existing ArcGIS for Schools program.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.