Facebook
TwitterFor more information about this layer please see the GIS Data Catalog.Channel migration hazards for seven King County rivers: Middle White River, Raging River, Tolt River, Three Forks area of Snoqualmie River, Cedar River, Green River, and the South Fork of the Skykomish River. The Cedar River was updated April 2015, the SF Skykomish June 2017, and the Tolt July 2018. In December 2019, the Middle White River was added, the Raging River was updated, and a revision was made to the updated Cedar CMZ.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Channels, Basins, and Anchorages is a 1:20,000-scale, polygon feature-based layer that includes the location of channels, turning basins, and anchorages within (mostly) Connecticut waters. The layer is derived from information depicted on the 2002 edition of digital National Oceanic & Atmospheric Administration (NOAA) nautical charts, Maptech, Inc. and US Army Corps of Engineers (USACOE) Volume 3 - Rivers & Harbors of Rhode Island and Connecticut Project Maps publication dated Sept 1988. The Channels, Basins, and Anchorages layer was compiled during the summer of 2001. The layer represents conditions at a particular point in time. The layer includes representations of areas of channels, turning basins, and anchorages that are or may be periodically maintained by various entitites for commercial and recreational uses. It does not include all possible/potential such areas, just those identified on the source documents; nor does the layer include any buoys or channel markers designating the bounds or entrances to channels, basins, or anchorages. Features are polygon locations that represent the approximate or assumed location of channels, turning basins, and anchorages. Attribute information is comprised of codes to uniquely identify individual features, encode feature information, and cartographically represent (symbolize) channels, turning basins, and anchorages features on a map. Data is compiled at 1:20,000 scale. This data is not updated.
Channels, Basins, and Anchorages is 1:20,000-scale data. It depicts the location of federal and non-federal channels, basins, and anchorages areas. Use this layer to display the locations of underwater boating/shipping areas in and around Long Island Sound and the waterways of Connecticut. Use this layer with 1:20,000-scale map data such as the 2002 digital National Oceanic & Atmospheric Administration (NOAA) Nautical Charts or with any other 1:24,000 scale DEP natural resource data. Not intended for maps printed at map scales greater or more detailed than 1:20,000 scale (1 inch = 1,666.66 feet.)
Facebook
TwitterThis data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Facebook
TwitterThe Office of National Marine Sanctuaries manages a system of sanctuaries and other managed areas around the country. The legal boundaries of these sanctuaries are defined within the Code of Federal Regulations, at 15 C.F.R. Part 922 and the subparts for each national marine sanctuary. The GIS compatible digital boundary files for each national marine sanctuary are representations of those le...
Facebook
TwitterDepicts approximate location of various Federal navigation channels. The lines represent the channel design edges (toe of the side slope that extends adjacent and outside of the channel). This file is incomplete (there are additional channels that will be added in a future update).
Facebook
TwitterSubstrate was classified using the method of (Cochrane and Lafferty, 2002) for this study. Sea floor character derived from towed sidescan sonar data is available for the mainland coast within the study area from USGS online publications (Cochrane and others, 2003; Cochrane and others, 2005). The number of substrate classes was reduced because rugosity could not be derived for all areas due to the lack of bathymetry data for other data sets used in the study. References Cited: Cochrane, G.R., Nasby, N.M., Reid, J.A., Waltenberger, B., Lee, K.M., 2003, Nearshore Benthic Habitat GIS for the Channel Islands National Marine Sanctuary and Southern California State Fisheries Reserves Volume 1: U.S. Geological Survey Open-File Report 03-85, http://pubs.usgs.gov/of/2003/0085/. Cochrane, G.R., and Lafferty, K.D., 2002, Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California: Continental Shelf Research, v. 22, p. 683-690. Cochrane, G.R., Conrad, J.E., Reid, J.A., Fangman, S., Golden, N.E., 2005, The Nearshore Benthic Habitat GIS for the Channel Islands National Marine Sanctuary and Southern California State Fisheries Reserves, Volume II; Version 1.0: U.S. Geological Survey Open-File Report 2005-1170, http://pubs.usgs.gov/of/2005/1170/.
Facebook
TwitterThe National Channel Framework (NCF) is an enterprise Geographic Information System (eGIS) database providing information about congressionally authorized navigation channels maintained by the US Army Corps of Engineers. This service includes channel details based on district-managed GIS polygons rather than on CAD-based linework, and is maintained through the eHydro hydrographic survey application. Details include reaches, channel areas, quarters, centerlines, and stationing.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A map of the University of Mississippi Field Station and accompanying GIS data
Facebook
TwitterAs part of a Channel Migration Zone Study, GeoEngineers, Inc. was contracted by Pierce County, Public Works Surface Water Management formerly “Water Programs” Division to create a series of shapefiles including the SPC_Migration_Potential_Areas.shp. Pierce_Migration_Potential_Areas.shp combines the include severe, moderate or low migration potential areas. GeoEngineers, Inc. completed migration potential studies of the White, Puyallup and Carbon Rivers (completed 2003 adopted 2005), South Prairie Creek (completed 2005 adopted 2017) and Upper Nisqually River (completed 2007 adopted 2017). These were accepted by SWM and Adopted by County Council.The MPA delineation involved identifying severe, moderate and low migration potential areas within the delineated CMZ. The MPA delineation approach is similar to that employed in our CMZ analysis; that future rates and character of migration will be similar to those of the past for similar water discharges, sediment influx, and debris entrainment conditions. This analysis was also based on the absence of levees, revetments and other confining structures. The width of each MPA was measured, based on delineation criteria developed specifically for this project, and then adjusted to accommodate geomorphic conditions not accounted for in the maximum migration rates. Criteria developed for mapping severe, moderate and low MPA are provided in the following paragraphs: Severe MPA includes the area lying inside the HCOT, and an area immediately outside the HCOT boundary equivalent to a distance the channel could travel in a specified period. The extent of the Severe Migration Potential Area outside the HCOT boundary is determined by two criteria. The first criterion is the distance the outside channel edge could travel in 10 years of steady lateral migration away from the HCOT boundary (Maximum lateral migration rates multiplied by a ten- year period). The second is defined by the distance the outside channel edge could travel in storm single event (i.e. maximum overnight rate) from the current channel position (2002). The landward most boundary of the two criteria defines the Severe Migration Potential Area.Moderate MPA includes areas adjacent to the outside edge of the severe migration potential area. The width of the moderate migration potential area is determined by the distance the outside channel edge could travel in five years (for South Prairie Creek 10 years) of steady lateral migration beyond the outside edge of the severe migration potential area. The CMZ boundary will serve as the outside edge of the moderate migration potential boundary at sites where the distance between the severe migration potential boundary and the CMZ boundary represents less the five years (for South Prairie Creek 10 years)of steady lateral migration. Moderate migration potential areas are not included at sites where the outside edge of the severe migration potential area is determined by the location of the CMZ boundary. The rate of migration used in the calculation is the maximum average rate of migration for each geomorphic reach (measured as described above). In some places the width of the Moderate Migration Potential Area may be modified based on geologic interpretation, professional judgment. Low MPA includes areas adjacent to the outside edge of the moderate migration potential area. The extent of the Low Migration Potential Area beyond the moderate migration potential boundary will be determined by CMZ boundary, as determined by our CMZ evaluation. Low migration potential areas will not be included at sites where the outside edge of either a severe or moderate migration potential area is determined by the location of the CMZ boundary. The most common adjustments typically involved widening the moderate MPA to include ancient abandoned channel deemed capable of arresting main stem flow in an avulsion event. Other common Moderate MPA adjustments involved increasing or decreasing the base width to accommodate the following conditions; The presence of native erosion resistant bank materials, such as the Osceola Mudflow or local downstream or oblique direction of meander bend migration.
Please read metadata for additional information (https://matterhorn.co.pierce.wa.us/GISmetadata/pdbswm_regulated_cmz_floodway_all.html). Any data download constitutes acceptance of the Terms of Use (https://matterhorn.co.pierce.wa.us/Disclaimer/PierceCountyGISDataTermsofUs (pdf).
Facebook
TwitterThe Digital Geologic Map of Chesapeake and Ohio Canal National Historical Park and Vicinity, District of Columbia, Virginia, Maryland and West Virginia is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Maryland Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (choh_metadata.txt; available at http://nrdata.nps.gov/choh/nrdata/geology/gis/choh_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (choh_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 18N. The data is within the area of interest of Chesapeake and Ohio Canal National Historical Park, as well as Antietam National Battlefield, Harpers Ferry National Historical Park, and George Washington Memorial Parkway.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterChannel migration is the natural process by which streams move laterally over time. It is typically a gradual phenomenon that works over many years to effect significant migration. In some cases, usually associated with flood events, significant migration can happen rapidly. Channel migration can and has created hazardous conditions within Oregon’s developed riparian areas. Areas of high susceptibility to rapid and potentially catastrophic migration are known anecdotally, but statewide susceptibility screening has not been performed. This dataset represents a screening of channel migration susceptibility for the primary and (if applicable) secondary drainage in each subbasin (HUC-8) that intersects with the State of Oregon.
Facebook
TwitterThese data were compiled to perform analyses of hydrologic change, changes in sediment transport, and channel change within Moenkopi Wash, Arizona. Objective(s) of our study were to quantify the magnitude and timing of changes in hydrology, sediment transport, and channel form within Moenkopi Wash and to determine the downstream effects of those changes on sediment delivery downstream to the Little Colorado River, and the Colorado River. These data represent instantaneous discharge records, suspended-sediment sample records, topographic survey data, historical aerial imagery, and channel polygons and centerlines mapped on the historical imagery. Instantaneous discharge records in this study began in 1926 and extend to 2022 and were collected at 5 different stream gages within Moenkopi Wash. Suspended-sediment samples were collected between 1948 and 2022 at four stream gage locations. Topographic datasets were collected by field surveys between 1940 and 2016 at five stream gage locations. Aerial imagery datasets were collected in the 1930s, 1952, 1968, 1979, 1992, 1997, 2007, 2013, and 2019. The 1968 and 1979 aerial imagery was collected by the U. S. Geological Survey. The 1952 imagery was collected by the U.S. Army Map Service. The 1992 and 1997 imagery were collected by the National Aerial Imagery Program. The 2007, 2013 and 2019 aerial images were collected by the National Agricultural Program. These data can be used to analyze changes in hydrology, sediment transport, and channel change within Moenkopi Wash.
Facebook
TwitterThe Australian Antarctic Data Centre's Mawson Station GIS data were originally mapped from March 1996 aerial photography. Refer to the metadata record 'Mawson Station GIS Dataset'. Since then various features have been added to this data as structures have been removed, moved or established. Some of these features have been surveyed. These surveys have metadata records from which the report describing the survey can be downloaded. However, other features have been 'eyed in' as more accurate data were not available. The eyeing in has been done based on advice from Australian Antarctic Division staff and using as a guide sources such as an aerial photograph, an Engineering plan, a map or a sketch. GPS data or measurements using a measuring tape may also have been used.
The data are included in the data available for download from a Related URL below. The data conform to the SCAR Feature Catalogue which includes data quality information. See a Related URL below. Data described by this metadata record has Dataset_id = 119. Each feature has a Qinfo number which, when entered at the 'Search datasets and quality' tab, provides data quality information for the feature.
Facebook
Twitterhttps://exactitudeconsultancy.com/privacy-policyhttps://exactitudeconsultancy.com/privacy-policy
The GIS market is projected to be valued at $12.8 billion in 2024, driven by factors such as increasing consumer awareness and the rising prevalence of industry-specific trends. The market is expected to grow at a CAGR of 7.2%, reaching approximately $25.4 billion by 2034.
Facebook
TwitterThis data represents established channel lines under Westchester County jurisdiction. County channel lines are established along entire lengths or sections of rivers and streams that are administered and maintained by County Department of Public Works.
Facebook
TwitterThis layer was created in 2018 using ArcGIS 10.5. The layer uses the shoreline of the 10-minute grids (v3), with divisions between the Great Lakes and connecting channels based off of:Michigan waters1. Descriptions in the 2000 Consent Decree for the boundaries between the St. Mary’s River and Lakes Huron and Superior, and the boundary between Lakes Michigan and Huron.2. The description in Fisheries Order 200 for the boundary between the St. Clair River and Lake Huron.3. The description in Fisheries Order 242 for the boundary between Lake St. Clair and the Detroit River boundary4. Descriptions in the Michigan Fishing Guide 2016-2017 for the boundary between the Detroit River and Lake Erie.5. Boundaries in the 1:24,000 National Hydrography Dataset (downloaded 2012) for the boundary in Michigan waters between Lake St. Clair and the St. Clair River.
Facebook
TwitterAs part of the NSTA’s published 2018/19 Activity Plan, the NSTA is publishing a set of regional geological maps for the Engish Channel area of the UKCS. These maps represent the fifth set of deliverables from a 3 year contract with Lloyd’s Register (LR) to produce a series of maps and associated databases for the whole of the UKCS.All data released with this set of geological maps is public domain data. The project has, however, benefited from a number of additional third party data sources which have been used to help inform final maps and/or derive interpreted products. These include the seismic interpretation work carried out by Heriot-Watt University (Rachel Brackenridge), the 21CXRM Palaeozoic project (which is now available in the public domain), CGG’s Target database and relevant products available via the BGS’s Offshore Geoindex. CDA is also kindly acknowledged for their support in downloading and providing much of the released well data to LR as part of this project.Due to the high level, regional nature of the project, the maps are being produced for the main geological time intervals e.g. Paleocene, Lower Cretaceous, Upper Jurassic. Each time interval includes the following products:• Depth structure maps• Isochore maps• Subcrop & supercrop maps• Structural elements maps• Depositional facies maps• Reservoir distribution maps• Source rock maps• Well penetration maps• Hydrocarbon occurrence maps
Facebook
TwitterUpdate date: from GISP repository on 2/6/25. This is a static dataset.Data Type: polyline dataAn open channel is digitized from paper or scanned imagery.Subtypes:Improved: An open drainage course confined with lined or unlined embankments.Unimproved: A natural drainage course graded to channelize storm water.Swale: A graded depression with relatively low slope to channelize storm water. Ditch: A trench provided to channelize storm water. Attributes: Most of the feature classes in this storm drain geometric network share the same GIS table schema. Only the most critical attributes per operations of the Los Angeles County Flood Control District are listed below:AttributeDescriptionASBDATEThe date the design plans were approved "as-built" or accepted as "final records".CROSS_SECTION_SHAPEThe cross-sectional shape of the pipe or channel. Examples include round, square, trapezoidal, arch, etc.DIAMETER_HEIGHTThe diameter of a round pipe or the height of an underground box or open channel.DWGNODrain Plan Drawing Number per LACFCD NomenclatureEQNUMAsset No. assigned by the Department of Public Works (in Maximo Database).MAINTAINED_BYIdentifies, to the best of LAFCD's knowledge, the agency responsible for maintaining the structure.MOD_DATEDate the GIS features were last modified.NAMEName of the individual drainage infrastructure.OWNERAgency that owns the drainage infrastructure in question.Q_DESIGNThe peak storm water runoff used for the design of the drainage infrastructure.SOFT_BOTTOMFor open channels, indicates whether the channel invert is in its natural state (not lined).SUBTYPEMost feature classes in this drainage geometric nature contain multiple subtypes. 1 = Improved, 2 = Unimproved, 3 = Ditch, 4 = SwaleUPDATED_BYThe person who last updated the GIS feature.WIDTHWidth of a channel in feet.This Storm Drain Dataset is a work in progress, and all users of this data are STRONGLY ENCOURAGED to obtain the most current copy, available for download at the LA County eGIS Hub site.Terms of UseThis data is derived from the County Cadastral Landbase and features are typically added to this dataset per recorded 'as-built' drawings. Accurate facility locations on the ground must be determined by qualified field personnel. If any errors are found, or if there are general questions, please contact the individuals listed in the Credits.This product is for information purposes and should not be used for legal, engineering, or survey purposes. County assumes no liability for any errors or omissions.
Facebook
TwitterStorm Drainage Open Channel
Facebook
TwitterFor more information about this layer please see the GIS Data Catalog.Channel migration hazards for seven King County rivers: Middle White River, Raging River, Tolt River, Three Forks area of Snoqualmie River, Cedar River, Green River, and the South Fork of the Skykomish River. The Cedar River was updated April 2015, the SF Skykomish June 2017, and the Tolt July 2018. In December 2019, the Middle White River was added, the Raging River was updated, and a revision was made to the updated Cedar CMZ.