Facebook
TwitterWorld Cities provides a basemap layer for the cities of the world. The cities include national capitals, provincial capitals, major population centers, and landmark cities. Population estimates are provided for those cities listed in open source data from the United Nations Statistics Division, United Nations Human Settlements Programme, and U.S. Census Bureau.
Facebook
TwitterThis city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Planning, Engineering & Permitting - GIS Mapping files
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Northeastern United States Town Boundary data are intended for geographic display of state, county and town (municipal) boundaries at statewide and regional levels. Use it to map and label towns on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut and Vicinity Town Boundary data are intended for geographic display of state, county and town (municipal) boundaries at statewide and regional levels. Use it to map and label towns on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This map data layer represents the GIS Map Panel Boundaries for the City of Bloomington, Indiana. The GIS Map Panel Boundaries data layer was created as a reference grid for the GIS map data. The grid tiles are 3000' by 2000' and cover a total of 86.3 square miles of central Monroe County in Indiana. The panel tiles are located arbitrary to any geographic features
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of municipal boundaries within Miami-Dade County, data includes the municipal codes and names.Updated: As Needed The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
Facebook
TwitterThe Digital Geologic-GIS Map of City of Rocks National Reserve and Vicinity, Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ciro_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ciro_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ciro_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ciro_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ciro_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ciro_geology_metadata_faq.pdf). Please read the ciro_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ciro_geology_metadata.txt or ciro_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.
All previously released versions of this data are available on the DCP Website: BYTES of the BIG APPLE. Current version: 202510
Facebook
TwitterPolygon features with attributes displaying the corporate limits of Baker, Baton Rouge, Central, and Zachary in East Baton Rouge Parish, Louisiana.Metadata
Facebook
TwitterWeb map displaying address, property and governmental boundary information within the City of Baker, Louisiana.
Facebook
TwitterThe Digital Geologic-GIS Map of the Park City Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (paci_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (paci_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (paci_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (paci_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Kentucky Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (paci_geology_metadata.txt or paci_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterAlaska City Boundaries with Certificates as attachments. Boundaries are based on the actual certificates issued by the Local Boundary Commission.
Facebook
TwitterThis layer contains Legal City boundaries within Los Angeles County. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works.The Los Angeles County Department of Public Works provides the most current shape file of these city boundaries for download at its https://egis-lacounty.hub.arcgis.com/datasets/la-county-city-boundaries/explore?location=34.153321%2C-118.083123%2C9.49.Note: This boundary layer will not line up with the Thomas Brothers® city layer.Principal attributes include:CITY_NAME: represents the city's name.CITY_TYPE: may be used for definition queries; "Unincorporated" or "City".FEAT_TYPE: contains the type of feature each polygon represents:Land - Use this value for your definition query if you want to see only land features on your map.Pier - One example is the Santa Monica Pier. Man-made features may be regarded as extensions of the coastline.Breakwater - Examples include the breakwater barriers that protect the Los Angeles Harbor.Water - Polygons with this attribute value represent internal navigable waters. Examples of internal waters are found in the Long Beach Harbor and in Marina del Rey.3NM Buffer - Per the Submerged Lands Act, the seaward boundaries of coastal cities and unincorporated county areas are three nautical miles (a nautical mile is 1852 meters) from the coastlineURL: cities website current as of 01/01/2023This product is for information purposes and should not be used for legal, engineering, or survey purposes. County assumes no liability for any errors or omissions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).
It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).
• The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)
• A single street closure may span multiple segments of a street.
• The street closure permit refers to all the component line segments.
• A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.
The roadway_id field is a unique GIS line segment representing the aforementioned
segments of road. The roadway_id values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id value may appear in multiple permits.
The field closure_id represents a unique ID for each closure, and permit_id uniquely identifies each permit. This is in contrast to the aforementioned roadway_id field which, again, is a unique ID only for the roadway segments.
City teams that use this data requested that each segment of each street closure permit
be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id field, most other data from that permit pertains equally to those three rows.
Thus, the values in most fields of the three records are identical.
Each row has the fields segment_num and total_segments which detail the relationship
of each record, and its corresponding permit, according to street segment. The above example
produced three records for a single permit. In this case, total_segments would equal 3 for each record. Each of those records would have a unique value between 1 and 3.
The geometry field consists of string values of lat/long coordinates, which can be used
to map the street segments.
All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.
These data are used by DOMI to track the status of street closures (and associated permits).
An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map is a compilation of the final set of city and county boundary changes filed with the California State Board of Equalization in accordance with Government Code 54900 for each assessment roll year beginning with the 2021 roll year. Boundary corrections are included in the dataset according to information provided by the city, county, and/or LAFCO. These corrections may or may not have been corrected in the Board of Equalization's records. Each layer is considered FINAL as of June in the year noted by the layer name. The boundaries from 2021 through 2025 are based on the California State Board of Equalization's tax rate area maps and may not align with other sources. For the latest data, please view the "City and County Boundary Line Changes" map.As of April 1, 2024, the maintenance of this map is provided by the California Department of Tax and Fee Administration (CDTFA) for sales and use tax purposes.
Facebook
TwitterVector polygon map data of city limits from across the State of Texas containing 2142 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
The digital file is created from the urban planning announcement data provided by the Urban Development Bureau. The fields include number, administrative district, use zone, zone abbreviation, urban plan name, establishment date, area, building coverage ratio, floor area ratio, maximum floor area, urban planning area, detailed planning area, notes, drawing revision date, issuance document number, and project name.
Facebook
Twitterhttps://tigerweb.geo.census.gov/tigerweb/TIGER (2024) boundary data.Census Designated PlacesCities and TownsCountiesPlus:Metropolitan Statistical Areas (MSA)Regional Commissions.This layer is used in the WebApp(s): Latest City Boundaries (TIGER)
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Facebook
TwitterWorld Cities provides a basemap layer for the cities of the world. The cities include national capitals, provincial capitals, major population centers, and landmark cities. Population estimates are provided for those cities listed in open source data from the United Nations Statistics Division, United Nations Human Settlements Programme, and U.S. Census Bureau.