100+ datasets found
  1. a

    Land Use Codes Table

    • hub.arcgis.com
    • data.stlouisco.com
    • +5more
    Updated Nov 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint Louis County GIS Service Center (2015). Land Use Codes Table [Dataset]. https://hub.arcgis.com/datasets/e565515812a34b4e9ddcd440bceb0209
    Explore at:
    Dataset updated
    Nov 17, 2015
    Dataset authored and provided by
    Saint Louis County GIS Service Center
    Description

    CSV Table. This table includes coded descriptions for Land Use Codes in the St. Louis County, Missouri parcel dataset. This is the land use description for a property. Please see field LUCODE in the Parcel dataset. Link to Metadata.

  2. V

    PLACES: ZCTA Data (GIS Friendly Format), 2023 release

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). PLACES: ZCTA Data (GIS Friendly Format), 2023 release [Dataset]. https://data.virginia.gov/dataset/places-zcta-data-gis-friendly-format-2023-release
    Explore at:
    csv, json, rdf, xslAvailable download formats
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 36 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

  3. V

    PLACES: ZCTA Data (GIS Friendly Format), 2022 release

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: ZCTA Data (GIS Friendly Format), 2022 release [Dataset]. https://data.virginia.gov/dataset/places-zcta-data-gis-friendly-format-2022-release
    Explore at:
    xsl, rdf, csv, jsonAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  4. PLACES: ZCTA Data (GIS Friendly Format), 2020 release

    • data.cdc.gov
    • data.virginia.gov
    • +5more
    Updated Oct 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health (2021). PLACES: ZCTA Data (GIS Friendly Format), 2020 release [Dataset]. https://data.cdc.gov/500-Cities-Places/PLACES-ZCTA-Data-GIS-Friendly-Format-2020-release/bdsk-unrd
    Explore at:
    kml, kmz, application/geo+json, csv, xlsx, xmlAvailable download formats
    Dataset updated
    Oct 7, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset contains model-based ZIP Code tabulation Areas (ZCTA) level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 27 measures at the ZCTA level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.

  5. d

    City of Tempe Zip Code Boundaries (Maricopa County GIS)

    • catalog.data.gov
    • performance.tempe.gov
    • +7more
    Updated Nov 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). City of Tempe Zip Code Boundaries (Maricopa County GIS) [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-zip-code-boundaries-maricopa-county-gis
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    City of Tempe
    Area covered
    Maricopa County, Tempe
    Description

    The City of Tempe ZIP Codes feature class is from Maricopa County GIS Open Data and is intended to show the USPS ZIP Code boundaries within Tempe, Arizona.

  6. PLACES: Place Data (GIS Friendly Format), 2024 release

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Place Data (GIS Friendly Format), 2024 release [Dataset]. https://catalog.data.gov/dataset/places-place-data-gis-friendly-format-2020-release-4a44e
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  7. C

    DOMI Street Closures For GIS Mapping

    • data.wprdc.org
    csv, html
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2025). DOMI Street Closures For GIS Mapping [Dataset]. https://data.wprdc.org/dataset/street-closures
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    City of Pittsburgh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).

    Preprocessing/Formatting

    It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).

    • The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)

    • A single street closure may span multiple segments of a street.

    • The street closure permit refers to all the component line segments.

    • A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.

    The roadway_id field is a unique GIS line segment representing the aforementioned segments of road. The roadway_id values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id value may appear in multiple permits.

    The field closure_id represents a unique ID for each closure, and permit_id uniquely identifies each permit. This is in contrast to the aforementioned roadway_id field which, again, is a unique ID only for the roadway segments.

    City teams that use this data requested that each segment of each street closure permit be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id field, most other data from that permit pertains equally to those three rows. Thus, the values in most fields of the three records are identical.

    Each row has the fields segment_num and total_segments which detail the relationship of each record, and its corresponding permit, according to street segment. The above example produced three records for a single permit. In this case, total_segments would equal 3 for each record. Each of those records would have a unique value between 1 and 3.

    The geometry field consists of string values of lat/long coordinates, which can be used to map the street segments.

    All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.

    Known Uses

    These data are used by DOMI to track the status of street closures (and associated permits).

    Further Documentation and Resources

    An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits

  8. a

    Code Enforcement Cases

    • hub.arcgis.com
    • v3-api-demo-dcdev.opendata.arcgis.com
    • +1more
    Updated Feb 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cape Coral GIS (2023). Code Enforcement Cases [Dataset]. https://hub.arcgis.com/maps/CapeGIS::code-enforcement-cases
    Explore at:
    Dataset updated
    Feb 22, 2023
    Dataset authored and provided by
    Cape Coral GIS
    Area covered
    Description

    This feature class was developed to represent code enforcement cases and their associated attributes for the purpose of mapping, analysis, and planning. The accuracy of this data varies and should not be used for precise measurements or calculations.

  9. V

    PLACES: ZCTA Data (GIS Friendly Format), 2021 release

    • data.virginia.gov
    • healthdata.gov
    • +4more
    csv, json, rdf, xsl
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: ZCTA Data (GIS Friendly Format), 2021 release [Dataset]. https://data.virginia.gov/dataset/places-zcta-data-gis-friendly-format-2021-release
    Explore at:
    xsl, json, csv, rdfAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf

  10. c

    CA Zip Code Boundaries

    • gis.data.ca.gov
    • data.ca.gov
    • +1more
    Updated Dec 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). CA Zip Code Boundaries [Dataset]. https://gis.data.ca.gov/datasets/ca-zip-code-boundaries/about
    Explore at:
    Dataset updated
    Dec 24, 2024
    Dataset authored and provided by
    California Department of Technology
    Area covered
    California,
    Description

    This feature service is derived from the Esri "United States Zip Code Boundaries" layer, queried to only CA data.For the original data see: https://esri.maps.arcgis.com/home/item.html?id=5f31109b46d541da86119bd4cf213848Published by the California Department of Technology Geographic Information Services Team.The GIS Team can be reached at ODSdataservices@state.ca.gov.U.S. ZIP Code Boundaries represents five-digit ZIP Code areas used by the U.S. Postal Service to deliver mail more effectively. The first digit of a five-digit ZIP Code divides the United States into 10 large groups of states (or equivalent areas) numbered from 0 in the Northeast to 9 in the far West. Within these areas, each state is divided into an average of 10 smaller geographical areas, identified by the second and third digits. These digits, in conjunction with the first digit, represent a Sectional Center Facility (SCF) or a mail processing facility area. The fourth and fifth digits identify a post office, station, branch or local delivery area.As of the time this layer was published, in January 2025, Esri's boundaries are sourced from TomTom (June 2024) and the 2023 population estimates are from Esri Demographics. Esri updates its layer annually and those changes will immediately be reflected in this layer. Note that, because this layer passes through Esri's data, if you want to know the true date of the underlying data, click through to Esri's original source data and look at their metadata for more information on updates.Cautions about using Zip Code boundary dataZip code boundaries have three characteristics you should be aware of before using them:Zip code boundaries change, in ways small and large - these are not a stable analysis unit. Data you received keyed to zip codes may have used an earlier and very different boundary for your zip codes of interest.Historically, the United States Postal Service has not published zip code boundaries, and instead, boundary datasets are compiled by third party vendors from address data. That means that the boundary data are not authoritative, and any data you have keyed to zip codes may use a different, vendor-specific method for generating boundaries from the data here.Zip codes are designed to optimize mail delivery, not social, environmental, or demographic characteristics. Analysis using zip codes is subject to create issues with the Modifiable Areal Unit Problem that will bias any results because your units of analysis aren't designed for the data being studied.As of early 2025, USPS appears to be in the process of releasing boundaries, which will at least provide an authoritative source, but because of the other factors above, we do not recommend these boundaries for many use cases. If you are using these for anything other than mailing purposes, we recommend reconsideration. We provide the boundaries as a convenience, knowing people are looking for them, in order to ensure that up-to-date boundaries are available.

  11. d

    Data from: PCCF and its Use with GIS

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Peller; Laurie Schretlen (2023). PCCF and its Use with GIS [Dataset]. http://doi.org/10.5683/SP3/2NQOHZ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Peter Peller; Laurie Schretlen
    Description

    This is an exercise on the use of Postal Code Conversion Files (PCCF) with GIS. (Note: Data associated with this exercise is available on the DLI FTP site under folder 1873-299.)

  12. North America Geographic Information System Market Analysis - Size and...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). North America Geographic Information System Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/north-america-gis-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    North America
    Description

    Snapshot img

    North America Geographic Information System Market Size 2025-2029

    The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
    Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Component
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premise
      Cloud
    
    
    Geography
    
      North America
    
        Canada
        Mexico
        US
    

    By Component Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.

    Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.

    Get a glance at the market report of share of various segments Request Free Sample

    Market Dynamics

    Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?

    Rising applications of geographic

  13. a

    Code District

    • gisservices-dallasgis.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jul 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Dallas GIS Services (2020). Code District [Dataset]. https://gisservices-dallasgis.opendata.arcgis.com/maps/DallasGIS::code-district
    Explore at:
    Dataset updated
    Jul 29, 2020
    Dataset authored and provided by
    City of Dallas GIS Services
    Area covered
    Description

    fcServiceAreas

  14. m

    ZIP Codes (5-Digit) from HERE (Navteq)

    • gis.data.mass.gov
    • geo-massdot.opendata.arcgis.com
    • +1more
    Updated Jul 8, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2015). ZIP Codes (5-Digit) from HERE (Navteq) [Dataset]. https://gis.data.mass.gov/datasets/zip-codes-5-digit-from-here-navteq
    Explore at:
    Dataset updated
    Jul 8, 2015
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    MassGIS had received quarterly updates of these data as part of its license for the HERE (Navteq) core map release (streets and related data); however, that license has expired. These ZIP Code boundaries are aligned to the street centerlines of the Q2 2018 HERE product (with a release date of April 1, 2018) and use a then-recent USPS source file.In March 2024, MassGIS modified the boundaries for all ZIP Code areas in Boston based on the U.S. Postal Service's ZIP Code Look Up by Address website. MassGIS also added polygons for ZIP Codes 02199 and 02203.Five-digit ZIP Codes were developed by the USPS and first introduced in 1963 for efficient mail delivery (the term ZIP stands for Zone Improvement Plan) but are difficult to map with complete certainty. In most cases, addresses in close proximity to each other are grouped in the same ZIP Code, which gives the appearance that ZIP Codes are defined by a clear geographic boundary. However, even when ZIP Codes appear to be geographically grouped, a clear ZIP Code boundary cannot always be drawn because ZIP Codes are only assigned to a point of delivery and not the spaces between delivery points. In areas without a regular postal route or no mail delivery, ZIP Codes may not be defined or have unclear boundaries.The USPS does not maintain an official ZIP Code map. The Census Bureau and many other commercial services will interpolate the data to create polygons to represent the approximate area covered by a ZIP code, but none of these maps are official or entirely accurate. Please see this good discussion of the issues of mapping ZIP Codes.See full metadata.Feature service also available.

  15. d

    Code Complaints

    • catalog.data.gov
    • data.tempe.gov
    • +11more
    Updated Oct 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Code Complaints [Dataset]. https://catalog.data.gov/dataset/code-complaints-e650a
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    City of Tempe
    Description

    This feature layer contains records of code complaints in the City of Tempe. Records are updated Tuesday through Saturday..Please note that there may be multiple complaint records associated with a single address point. When viewing these data using GIS software, multiple records per address result in stacked points on the map. Data are provided in this exploded format to make it easier for users.The data found here are displayed at https://gis.tempe.gov/codecompliance albeit in a non-exploded form where points aren't stacked.Contact EmailLink: www.tempe.gov/codeData Source: AccelaData Source Type: GeospatialPublish Frequency: WeeklyPublish Method: Automatic (via ETL)

  16. s

    Census Zip Code Tabulation Area

    • opendata.suffolkcountyny.gov
    • data-uvalibrary.opendata.arcgis.com
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suffolk County GIS (2020). Census Zip Code Tabulation Area [Dataset]. https://opendata.suffolkcountyny.gov/datasets/census-zip-code-tabulation-area
    Explore at:
    Dataset updated
    Dec 8, 2020
    Dataset authored and provided by
    Suffolk County GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature class was created by exporting the Census Zip Code features from the 2020 TIGER/Line Geodatabase.TIGER Geodatabases are spatial extracts from the Census Bureau’s MAF/TIGER database. These files do not include demographic data, but they contain geographic entity codes that can be linked to the Census Bureau’s demographic data.

  17. a

    Code Enforcement Zones

    • hub.arcgis.com
    • capecoral-capegis.opendata.arcgis.com
    Updated Jul 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cape Coral GIS (2016). Code Enforcement Zones [Dataset]. https://hub.arcgis.com/maps/CapeGIS::code-enforcement-zones
    Explore at:
    Dataset updated
    Jul 27, 2016
    Dataset authored and provided by
    Cape Coral GIS
    Area covered
    Description

    This data is intended to display code enforcement zones for Cape Coral and their associated attributes for the purpose of mapping, analysis, and planning. The accuracy of this data varies and should not be used for precise measurements or calculation

  18. a

    Workers Driving Alone GIS

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2022). Workers Driving Alone GIS [Dataset]. https://hub.arcgis.com/maps/sccphd::workers-driving-alone-gis
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Table contains count and percentage of county residents ages 16 and older who drove alone to work. Data are presented at county, city, zip code and census tract level. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B08006; data accessed on July 20, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographypop16p (Numeric): Population ages 16 years and oldert_drove_alone (Numeric): Number of workers who drove alone to workpct_drove_alone (Numeric): Percent of workers who drove alone to work

  19. Z

    U.S. ZIP Code Boundary Data

    • zip-codes.com
    Updated Nov 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasheer, L.L.C. (2025). U.S. ZIP Code Boundary Data [Dataset]. https://www.zip-codes.com/zip-code-map-boundary-data.asp
    Explore at:
    txt, kml, application/geo+json, application/x-shapefile, csv, application/sqlAvailable download formats
    Dataset updated
    Nov 1, 2025
    Dataset provided by
    Datasheer, L.L.C.
    License

    https://www.zip-codes.com/tos-database.asphttps://www.zip-codes.com/tos-database.asp

    Time period covered
    2003 - Present
    Area covered
    United States of America,
    Variables measured
    State, ZIP Code, County FIPS, County Name, PO Box Count, Release Version, Primary City Name, 3-Digit ZIP Prefix, Business Delivery Count, Boundary Polygon Geometry, and 5 more
    Description

    High-precision polygonal and centroid-based geographic representations of all U.S. postal ZIP Codes for mapping, analytics, and data enrichment. Built from USPS carrier route data with quarterly updates. Includes boundary polygons (~41,000 deliverable ZIP Codes) and centroids (~33,000 total ZIP Codes including PO Box and Unique types). Features continuous nationwide coverage with filler ZIPs, delivery statistics (residential, multifamily, single-family, business counts), and support for 8 file formats: Shapefile, GeoJSON, SQL Server, MySQL, PostgreSQL, WKT, CSV, and KML. WGS84 coordinate system with 6 decimal precision. Compatible with all major GIS platforms including ArcGIS, QGIS, MapInfo, Tableau, Power BI, and web mapping libraries. All purchases include quarterly updates, unlimited downloads, FTP access, and free technical support.

  20. C

    Allegheny County Zip Code Boundaries

    • data.wprdc.org
    • datasets.ai
    • +5more
    csv, geojson, html +2
    Updated Jan 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2018). Allegheny County Zip Code Boundaries [Dataset]. https://data.wprdc.org/dataset/allegheny-county-zip-code-boundaries2
    Explore at:
    csv, zip(754269), html, geojson(2945150), kml(2400895)Available download formats
    Dataset updated
    Jan 9, 2018
    Dataset provided by
    County of Allegheny, PA
    Authors
    Allegheny County
    Area covered
    Allegheny County
    Description
    This dataset demarcates the zip code boundaries that lie within Allegheny County.

    If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below.

    Category: Civic Vitality and Governance

    Organization: Allegheny County

    Department: Geographic Information Systems Group; Department of Administrative Services

    Temporal Coverage: current

    Data Notes:

    Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot

    Development Notes: none

    Other: none

    Related Document(s): Data Dictionary (none)

    Frequency - Data Change: As needed

    Frequency - Publishing: As needed

    Data Steward Name: Eli Thomas

    Data Steward Email: gishelp@alleghenycounty.us
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Saint Louis County GIS Service Center (2015). Land Use Codes Table [Dataset]. https://hub.arcgis.com/datasets/e565515812a34b4e9ddcd440bceb0209

Land Use Codes Table

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 17, 2015
Dataset authored and provided by
Saint Louis County GIS Service Center
Description

CSV Table. This table includes coded descriptions for Land Use Codes in the St. Louis County, Missouri parcel dataset. This is the land use description for a property. Please see field LUCODE in the Parcel dataset. Link to Metadata.

Search
Clear search
Close search
Google apps
Main menu