The City of Tempe ZIP Codes feature class is from Maricopa County GIS Open Data and is intended to show the USPS ZIP Code boundaries within Tempe, Arizona.
This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population counts, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census 2021 ZCTA boundary file in a GIS system to produce maps for 40 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Count and percentage of county residents by age groups. Data are summarized at county, city, zip code and census tract of residence. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B01001; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationt0_4 (Numeric): Population count ages less than 5 yearst5_14 (Numeric): Population count ages 5 to 14 yearst15_24 (Numeric): Population count ages 15 to 24 yearst25_34 (Numeric): Population count ages 25 to 34 yearst35_44 (Numeric): Population count ages 35 to 44 yearst45_54 (Numeric): Population count ages 45 to 54 yearst55_64 (Numeric): Population count ages 55 to 64 yearst65over (Numeric): Population count ages 65 years and olderp_0_4 (Numeric): Percent of people ages less than 5 yearsp_5_14 (Numeric): Percent of people ages 5 to 14 yearsp_15_24 (Numeric): Percent of people ages 15 to 24 yearsp_25_34 (Numeric): Percent of people ages 25 to 34 yearsp_35_44 (Numeric): Percent of people ages 35 to 44 yearsp_45_54 (Numeric): Percent of people ages 45 to 54 yearsp_55_64 (Numeric): Percent of people ages 55 to 64 yearsp_65over (Numeric): Percent of people ages 65 years and older
This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Code Enforcement Sectors dataset is a spatial data representation of Code Enforcement Sectors that divide Code Enforcement Zones into three, North, Central and South within the limit of the City of Miami. The data was created by Code Enforcement Department (used to operate as part of Neighborhood Enhancement Team or NET before December 2003), City of Miami. It is maintained and managed by the GIS Team of the City.
CSV Table. This table includes coded descriptions for Property Class Codes in the St. Louis County, Missouri Parcel dataset. Property Class Codes are the Tax Subclass Codes for a property. Please see field PROPCLASS in the Parcel dataset. Link to Metadata.
This feature class was developed to represent code enforcement cases and their associated attributes for the purpose of mapping, analysis, and planning. The accuracy of this data varies and should not be used for precise measurements or calculations.
This feature service is derived from the Esri "United States Zip Code Boundaries" layer, queried to only CA data.For the original data see: https://esri.maps.arcgis.com/home/item.html?id=5f31109b46d541da86119bd4cf213848Published by the California Department of Technology Geographic Information Services Team.The GIS Team can be reached at ODSdataservices@state.ca.gov.U.S. ZIP Code Boundaries represents five-digit ZIP Code areas used by the U.S. Postal Service to deliver mail more effectively. The first digit of a five-digit ZIP Code divides the United States into 10 large groups of states (or equivalent areas) numbered from 0 in the Northeast to 9 in the far West. Within these areas, each state is divided into an average of 10 smaller geographical areas, identified by the second and third digits. These digits, in conjunction with the first digit, represent a Sectional Center Facility (SCF) or a mail processing facility area. The fourth and fifth digits identify a post office, station, branch or local delivery area.As of the time this layer was published, in January 2025, Esri's boundaries are sourced from TomTom (June 2024) and the 2023 population estimates are from Esri Demographics. Esri updates its layer annually and those changes will immediately be reflected in this layer. Note that, because this layer passes through Esri's data, if you want to know the true date of the underlying data, click through to Esri's original source data and look at their metadata for more information on updates.Cautions about using Zip Code boundary dataZip code boundaries have three characteristics you should be aware of before using them:Zip code boundaries change, in ways small and large - these are not a stable analysis unit. Data you received keyed to zip codes may have used an earlier and very different boundary for your zip codes of interest.Historically, the United States Postal Service has not published zip code boundaries, and instead, boundary datasets are compiled by third party vendors from address data. That means that the boundary data are not authoritative, and any data you have keyed to zip codes may use a different, vendor-specific method for generating boundaries from the data here.Zip codes are designed to optimize mail delivery, not social, environmental, or demographic characteristics. Analysis using zip codes is subject to create issues with the Modifiable Areal Unit Problem that will bias any results because your units of analysis aren't designed for the data being studied.As of early 2025, USPS appears to be in the process of releasing boundaries, which will at least provide an authoritative source, but because of the other factors above, we do not recommend these boundaries for many use cases. If you are using these for anything other than mailing purposes, we recommend reconsideration. We provide the boundaries as a convenience, knowing people are looking for them, in order to ensure that up-to-date boundaries are available.
This dataset contains model-based ZIP Code tabulation Areas (ZCTA) level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 27 measures at the ZCTA level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.
This dataset contains model-based county-level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2022 county population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the census 2022 county boundary file in a GIS system to produce maps for 40 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).
It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).
• The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)
• A single street closure may span multiple segments of a street.
• The street closure permit refers to all the component line segments.
• A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.
The roadway_id
field is a unique GIS line segment representing the aforementioned
segments of road. The roadway_id
values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id
value may appear in multiple permits.
The field closure_id
represents a unique ID for each closure, and permit_id
uniquely identifies each permit. This is in contrast to the aforementioned roadway_id
field which, again, is a unique ID only for the roadway segments.
City teams that use this data requested that each segment of each street closure permit
be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id
field, most other data from that permit pertains equally to those three rows.
Thus, the values in most fields of the three records are identical.
Each row has the fields segment_num
and total_segments
which detail the relationship
of each record, and its corresponding permit, according to street segment. The above example
produced three records for a single permit. In this case, total_segments
would equal 3 for each record. Each of those records would have a unique value between 1 and 3.
The geometry
field consists of string values of lat/long coordinates, which can be used
to map the street segments.
All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.
These data are used by DOMI to track the status of street closures (and associated permits).
An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This feature class was created by exporting the Census Zip Code features from the 2020 TIGER/Line Geodatabase.TIGER Geodatabases are spatial extracts from the Census Bureau’s MAF/TIGER database. These files do not include demographic data, but they contain geographic entity codes that can be linked to the Census Bureau’s demographic data.
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,
This is an exercise on the use of Postal Code Conversion Files (PCCF) with GIS. (Note: Data associated with this exercise is available on the DLI FTP site under folder 1873-299.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The file "Instructions for reproducing the results.pdf" describes the steps needed to reproduce the experiments presented in our article "Simultaneous selection and displacement of buildings and roads for map generalization via mixed-integer quadratic programming".The file "simultaneous_selection_and_displacement.zip" contains the code and input data that we used for the experiments.
https://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/
PLACES: County Data (GIS Friendly Format), 2024 release
Description
This dataset contains model-based county-level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC)… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/places-county-data-gis-friendly-format-2024-releas.
This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below.Category: Civic Vitality and GovernanceOrganization: Allegheny CountyDepartment: Geographic Information Systems Group; Department of Administrative ServicesTemporal Coverage: currentData Notes: Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey FootDevelopment Notes: noneOther: noneRelated Document(s): Data Dictionary (none)Frequency - Data Change: As neededFrequency - Publishing: As neededData Steward Name: Eli ThomasData Steward Email: gishelp@alleghenycounty.us
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A point feature class of code compliance violations within Miami-Dade County. Open violations that were issued within unincorporated areas of Miami-Dade County for non-compliance of housing standards regulations and activities prohibited in residential areas. Updated: Daily-Job The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains model-based census tract level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The code is used for measuring the vulnerability of urban street networks based on large-scale region segmentation. Corresponding paper entitiled "Vulnerability analysis of urban street networks: A large-scale region segmentation approach" has been submitted to IJGIS.
The City of Tempe ZIP Codes feature class is from Maricopa County GIS Open Data and is intended to show the USPS ZIP Code boundaries within Tempe, Arizona.