https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Consulting Service market is expected to reach 1637 million by 2023, growing at a CAGR of 15% during the forecast period. Geospatial data analytics, predictive modeling, and situational awareness are key drivers of the market growth. The rising adoption of GIS in various industries, such as transportation, agriculture, energy, and government, is contributing to the market's expansion. The market is segmented based on type, application, and region. By type, the market is divided into custom mapping services, GIS mapping software development, and others. The custom mapping services segment is expected to hold the largest share of the market due to the increasing demand for customized maps for specific purposes. By application, the market is segmented into transportation, agriculture, energy, and others. The transportation segment is expected to witness the highest growth rate due to the growing use of GIS in traffic management, route optimization, and logistics. By region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. North America is expected to hold the largest share of the market due to the presence of key players and the early adoption of GIS technology. Asia Pacific is expected to experience the highest growth rate due to the increasing infrastructure development and urbanization in the region.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.
505 Economics is comprised of doctoral and post-doctoral researchers based at the London School of Economics. We blend together experience in data science, GIS, artificial intelligence and economics.
Our department at LSE is ranked number 1 in Economic Geography in the world.
Get in touch to discuss how we can help you with your geospatial and economics projects.
We have previously: Created sub-national GDP measures using high resolution satellite imagery and deep learning for EU regions Created sub-national economic data for conflict zones using alternative data Extracted geographic features for African countries (e.g. POI, road network data) Created Computable general equilibrium (CGE) models
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
https://www.beaconbid.com/index-licensehttps://www.beaconbid.com/index-license
Walworth County is seeking bids for GIS Professional Consulting Services due 2024-09-09T05:00:00.000Z
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach a market size of $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.6% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of cloud-based GIS solutions offers scalability and cost-effectiveness, attracting both large enterprises and smaller organizations. Furthermore, the rising demand for location intelligence across various sectors, including urban planning, environmental management, and logistics, significantly drives market growth. Advancements in data analytics techniques, such as machine learning and artificial intelligence, are enhancing the capabilities of GIS analytics, leading to more accurate predictions and insightful decision-making. The integration of GIS with other technologies, like IoT and Big Data, further amplifies its value proposition across diverse applications. Competitive pressures among established players like ESRI, Hexagon, Pitney Bowes, SuperMap, Bentley Systems, GE, GeoStar, and Zondy Cyber Group are driving innovation and fostering market expansion. However, market growth might face certain challenges. The complexity of GIS analytics software and the need for specialized expertise can hinder widespread adoption, particularly among smaller businesses with limited resources. Data security and privacy concerns related to handling sensitive location data also pose a significant restraint. Despite these challenges, the long-term outlook remains positive, driven by continuous technological innovation, increasing data availability, and growing awareness of the strategic value of location intelligence across various industries. The market's segmentation, while not explicitly provided, can reasonably be assumed to include software, services, and hardware components, further contributing to its multifaceted growth trajectory.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2018 CT Data Catalog (Non GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/fe457197-5afe-4a20-a131-1bdcf9bd8ace on 26 January 2022.
--- Dataset description provided by original source is as follows ---
Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management. This catalog does not contain information about high value GIS data, which is compiled in a separate data inventory at the following link: https://data.ct.gov/Government/CT-Data-Catalog-GIS-/p7we-na27
As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.
High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.
This dataset was last updated 3/4/2019 and will continue to be updated as high value data inventories are submitted to OPM.
--- Original source retains full ownership of the source dataset ---
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Analytics market size is projected to grow remarkably from $9.1 billion in 2023 to $21.7 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This substantial growth can be attributed to several factors such as technological advancements in GIS, increasing adoption in various industry verticals, and the rising importance of spatial data for decision-making processes.
The primary growth driver for the GIS Analytics market is the increasing need for accurate and efficient spatial data analysis to support critical decision-making processes across various industries. Governments and private sectors are investing heavily in GIS technology to enhance urban planning, disaster management, and resource allocation. With the world becoming more data-driven, the reliance on GIS for geospatial data has surged, further propelling its market growth. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) with GIS is revolutionizing the analytics capabilities, offering deeper insights and predictive analytics.
Another significant growth factor is the expanding application of GIS analytics in disaster management and emergency response. Natural disasters such as hurricanes, earthquakes, and wildfires have highlighted the importance of GIS in disaster preparedness, response, and recovery. The ability to analyze spatial data in real-time allows for quicker and more efficient allocation of resources, thus minimizing the impact of disasters. Moreover, GIS analytics plays a pivotal role in climate change studies, helping scientists and policymakers understand and mitigate the adverse effects of climate change.
The transportation sector is also a major contributor to the growth of the GIS Analytics market. With the rapid urbanization and increasing traffic congestion in cities, there is a growing demand for effective transport management solutions. GIS analytics helps in route optimization, traffic management, and infrastructure development, thereby enhancing the overall efficiency of transportation systems. The integration of GIS with Internet of Things (IoT) devices and sensors is further enhancing the capabilities of traffic management systems, contributing to the market growth.
Regionally, North America is the largest market for GIS analytics, driven by the high adoption rate of advanced technologies and significant investment in geospatial infrastructure by both public and private sectors. The Asia Pacific region is expected to witness the highest growth rate during the forecast period due to the rapid urbanization, infrastructural developments, and increasing government initiatives for smart city projects. Europe and Latin America are also contributing significantly to the market growth owing to the increasing use of GIS in urban planning and environmental monitoring.
The GIS Analytics market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the continuous advancements in GIS software solutions that offer enhanced functionalities such as data visualization, spatial analysis, and predictive modeling. The increasing adoption of cloud-based GIS software solutions, which offer scalable and cost-effective options, is further driving the growth of this segment. Additionally, open-source GIS software is gaining popularity, providing more accessible and customizable options for users.
The hardware segment includes GIS data collection devices such as GPS units, remote sensing instruments, and other data acquisition tools. This segment is witnessing steady growth due to the increasing demand for high-precision GIS data collection equipment. Technological advancements in hardware, such as the development of LiDAR and drones for spatial data collection, are significantly enhancing the capabilities of GIS analytics. Additionally, the integration of mobile GIS devices is facilitating real-time data collection, contributing to the growth of the hardware segment.
The services segment encompasses consulting, implementation, training, and maintenance services. This segment is expected to grow at a significant pace due to the increasing demand for professional services to manage and optimize GIS systems. Organizations are seeking expert consultants to help them leverage GIS analytics for strategic decision-making and operational efficiency. Additionally, the growing complexity o
https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Explore historical ownership and registration records by performing a reverse Whois lookup for the email address peter.kiess@gis-consulting.de..
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Google Maps Platform (GMP) consulting services market is experiencing robust growth, driven by the increasing adoption of location-based services across various sectors. The market, estimated at $2 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $6 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising demand for location intelligence and data-driven decision-making across large enterprises and SMEs is pushing companies to leverage GMP's capabilities. Secondly, the shift towards online services, facilitated by the increasing accessibility and affordability of high-speed internet, is bolstering the adoption of GMP consulting services for efficient mapping, navigation, and location-based marketing. Furthermore, advancements in augmented reality (AR) and virtual reality (VR) technologies integrated with GMP are creating new avenues for innovative applications, driving market growth. However, factors like the high cost of implementation and the need for specialized expertise can restrain market expansion. The market is segmented by application (large enterprises and SMEs) and service type (online and offline), with large enterprises currently dominating due to their greater resources and need for complex location-based solutions. Geographically, North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to exhibit the fastest growth rate due to rapid digitalization and increasing smartphone penetration. The competitive landscape is fragmented, with a mix of global consulting giants like Deloitte, Accenture, and WPP, alongside specialized GMP consulting firms such as MapsPeople and Applied Geographics. These companies are engaged in fierce competition, offering a range of services including integration, customization, application development, and ongoing support. The success of these firms is contingent on their ability to provide tailored solutions that cater to the unique needs of diverse industries and clients, and to continuously adapt to the ever-evolving features and functionalities of the GMP. A critical factor for future growth will be the ability to integrate GMP with other platforms and technologies to create holistic and effective solutions for clients, generating a compelling return on investment. This necessitates significant investment in R&D and upskilling of the workforce.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical holdings data showing quarterly positions, market values, shares held, and portfolio percentages for GIS held by Vantage Consulting Group Inc from Q1 2021 to Q2 2024
Historical ownership data of GIS by Vantage Consulting Group Inc
description: Building Footprints dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.; abstract: Building Footprints dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
Detention Centers dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
In 1999 development of Berlins' parcels commenced by the James Sewell company. In 2007, New England Geosystems took over as the GIS consultant for Berlin, CT. Parcel edits were created using coordinated geometry when possible, starting in 2007. Edits have been recorded since this date. Also in 2007, a project to draft and link all condo footprints was conducted and completed. These footprints are still maintained and updated as needed. New England Geosystems also manages and maintains a parcel point and arc layer, which is formatted in the same schema. Last updated: Oct. 2014
Universities dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
description: Libraries dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.; abstract: Libraries dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Consulting Service market is expected to reach 1637 million by 2023, growing at a CAGR of 15% during the forecast period. Geospatial data analytics, predictive modeling, and situational awareness are key drivers of the market growth. The rising adoption of GIS in various industries, such as transportation, agriculture, energy, and government, is contributing to the market's expansion. The market is segmented based on type, application, and region. By type, the market is divided into custom mapping services, GIS mapping software development, and others. The custom mapping services segment is expected to hold the largest share of the market due to the increasing demand for customized maps for specific purposes. By application, the market is segmented into transportation, agriculture, energy, and others. The transportation segment is expected to witness the highest growth rate due to the growing use of GIS in traffic management, route optimization, and logistics. By region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. North America is expected to hold the largest share of the market due to the presence of key players and the early adoption of GIS technology. Asia Pacific is expected to experience the highest growth rate due to the increasing infrastructure development and urbanization in the region.