100+ datasets found
  1. d

    Lunar Grid Reference System Rasters and Shapefiles

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-rasters-and-shapefiles
    Explore at:
    Dataset updated
    Oct 12, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

  2. NAME GIS Data Layers

    • data.ucar.edu
    archive
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David J. Gochis (2024). NAME GIS Data Layers [Dataset]. http://doi.org/10.26023/B15X-8CPM-WV00
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    David J. Gochis
    Time period covered
    Jun 1, 2004 - Sep 30, 2004
    Area covered
    Description

    This dataset contains a variety of spatial data layers compiled in support of research activities associated with the NAME research program. With a few exception the data layers have each been imported and projected to a common geographic coordinate system into the ESRI ArcGIS geographical information system. This dataset is one large (550 MB) gzipped tar file.

  3. a

    NDGISHUB State Plane Coordinate Systems

    • gishubdata-ndgov.hub.arcgis.com
    Updated Mar 1, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Dakota (2002). NDGISHUB State Plane Coordinate Systems [Dataset]. https://gishubdata-ndgov.hub.arcgis.com/datasets/ndgishub-state-plane-coordinate-systems
    Explore at:
    Dataset updated
    Mar 1, 2002
    Dataset authored and provided by
    State of North Dakota
    Area covered
    Description

    State Plane Coordinate System Zones for North Dakota

  4. NPS - Buildings - Geographic Coordinate System

    • public-nps.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2019). NPS - Buildings - Geographic Coordinate System [Dataset]. https://public-nps.opendata.arcgis.com/datasets/nps-buildings-geographic-coordinate-system-1
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset authored and provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Description

    The National Park Service Building Spatial Data Standard is intended to provide a framework for organizing our building point and polygon spatial data, documenting its lineage, and facilitating data integration as well as data sharing. The standards will help ensure spatial data consistency, quality, and accuracy and will assist in program direction, reporting, and information requests.

  5. d

    ARCHIVED: Parking Citations

    • catalog.data.gov
    • data.lacity.org
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2024). ARCHIVED: Parking Citations [Dataset]. https://catalog.data.gov/dataset/parking-citations-0e4fd
    Explore at:
    Dataset updated
    Jan 5, 2024
    Dataset provided by
    data.lacity.org
    Description

    New Parking Citations dataset here: https://data.lacity.org/Transportation/Parking-Citations/4f5p-udkv/about_data ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/

  6. c

    1940 Imagery (3ft - Puyallup River)

    • geohub.cityoftacoma.org
    Updated Jan 1, 1940
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (1940). 1940 Imagery (3ft - Puyallup River) [Dataset]. https://geohub.cityoftacoma.org/maps/tacoma::1940-imagery-3ft-puyallup-river/about
    Explore at:
    Dataset updated
    Jan 1, 1940
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Puyallup River 1940 - 3 foot Aerials for ArcGIS Online/Bing Maps/Google Maps, etc.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgCompany: Army Corps of EngineersScale: Approx. 1:15,000 Puget Sound River History Project - Version 1 Puget Sound River History Project - Version 2MetadataOriginal ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.508957 East longitude: -122.305211 North latitude: 47.377456 South latitude: 47.121285Extent in the item's coordinate system: West longitude: 1142687.587301 East longitude: 1191072.715539 South latitude: 658328.705521 North latitude: 750622.583189

  7. v

    Next Generation 9-1-1 GIS Data Model Templates

    • vgin.vdem.virginia.gov
    • hub.arcgis.com
    Updated Jul 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2021). Next Generation 9-1-1 GIS Data Model Templates [Dataset]. https://vgin.vdem.virginia.gov/documents/59a8f883329340d0afa7de60adad81e8
    Explore at:
    Dataset updated
    Jul 29, 2021
    Dataset authored and provided by
    Virginia Geographic Information Network
    Description

    There are many useful strategies for preparing GIS data for Next Generation 9-1-1. One step of preparation is making sure that all of the required fields exist (and sometimes populated) before loading into the system. While some localities add needed fields to their local data, others use an extract, transform, and load process to transform their local data into a Next Generation 9-1-1 GIS data model, and still others may do a combination of both.There are several strategies and considerations when loading data into a Next Generation 9-1-1 GIS data model. The best place to start is using a GIS data model schema template, or an empty file with the needed data layout to which you can append your data. Here are some resources to help you out. 1) The National Emergency Number Association (NENA) has a GIS template available on the Next Generation 9-1-1 GIS Data Model Page.2) The NENA GIS Data Model template uses a WGS84 coordinate system and pre-builds many domains. The slides from the Virginia NG9-1-1 User Group meeting in May 2021 explain these elements and offer some tips and suggestions for working with them. There are also some tips on using field calculator. Click the "open" button at the top right of this screen or here to view this information.3) VGIN adapted the NENA GIS Data Model into versions for Virginia State Plane North and Virginia State Plane South, as Virginia recommends uploading in your local coordinates and having the upload tools consistently transform your data to the WGS84 (4326) parameters required by the Next Generation 9-1-1 system. These customized versions only include the Site Structure Address Point and Street Centerlines feature classes. Address Point domains are set for address number, state, and country. Street Centerline domains are set for address ranges, parity, one way, state, and country. 4) A sample extract, transform, and load (ETL) for NG9-1-1 Upload script is available here.Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.

  8. c

    Lunar Grid Reference System (LGRS) Terrestrial Navigational Training Grids...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lunar Grid Reference System (LGRS) Terrestrial Navigational Training Grids in Artemis Condensed Coordinate (ACC) Format [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/lunar-grid-reference-system-lgrs-terrestrial-navigational-training-grids-in-artemis-conden
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids to meet NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC). This data release includes LGRS grids finer than 25km (1km, 100m, and 10m) in ACC format for a small number of terrestrial analog sites of interest. The grids contained in this data release are projected in the terrestrial Universal Transverse Mercator (UTM) Projected Coordinate Reference System (PCRS) using the World Geodetic System of 1984 (WGS84) as its reference datum. A small number of geotiffs used to related the linear distortion the UTM and WGS84 systems imposes on the analog sites include: 1) a clipped USGS Nation Elevation Dataset (NED) Digital Elevation Model (DEM); 2) the grid scale factor of the UTM zone the data is projected in, 3) the height factor based on the USGS NED DEM, 4) the combined factor, and 5) linear distortion calculated in parts-per-million (PPM). Geotiffs are projected from WGS84 in a UTM PCRS zone. Distortion calculations are based on the methods State Plane Coordinate System of 2022. See Dennis (2021; https://www.fig.net/resources/proceedings/fig_proceedings/fig2023/papers/cinema03/CINEMA03_dennis_12044.pdf) for more information. Coarser grids, (>=25km) such as the lunar LTM, LPS, and LGRS grids are not released here but may be acceded from https://doi.org/10.5066/P13YPWQD and displayed using a lunar datum. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. Terrestrial Locations and associated LGRS ACC Grids and Files: Projection Location Files UTM 11N Yucca Flat 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 12N Buffalo Park 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff Cinder Lake 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff JETT3 Arizona 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff JETT5 Arizona 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff Meteor Crater 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 13N HAATS 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile 1km Grid Shapefile Derby LZ Clip 100m Grid Shapefile Derby LZ Clip 10m Grid Shapefile Derby LZ Clip 1km Grid Shapefile Eagle County Regional Airport KEGE Clip 100m Grid Shapefile Eagle County Regional Airport KEGE Clip 10m Grid Shapefile Eagle County Regional Airport KEGE Clip 1km Grid Shapefile Windy Point LZ Clip 100m Grid Shapefile Windy Point LZ Clip 10m Grid Shapefile Windy Point LZ Clip USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 15N Johnson Space Center 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 28N JETT2 Icelandic Highlands 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff The shapefiles and rasters utilize UTM projections. For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude should utilize a registered PCRS. To select the correct UTM EPSG code, determine the zone based on longitude (zones are 6° wide, numbered 1–60 from 180°W) and hemisphere (Northern Hemisphere uses EPSG:326XX; Southern Hemisphere uses EPSG:327XX), where XX is the zone number. For display in display in latitude and longitude, select a correct WGS84 EPSG code, such as EPSG:4326. Note: The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a Transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These Transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like its equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized similarly to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require an LPS projection and equatorial areas a Transverse Mercator. We describe the differences in the techniques and methods reported in this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These grids are designed to condense a full LGRS coordinate to a relative coordinate of 6 characters in length. LGRS in ACC format is completed by imposing a 1km grid within the LGRS 25km grid, then truncating the grid precision to 10m. To me the character limit, a coordinate is reported as a relative value to the lower-left corner of the 25km LGRS zone without the zone information; However, zone information can be reported. As implemented, and 25km^2 area on the lunar surface will have a set of a unique set of ACC coordinates to report locations The shape files provided in this data release are projected in the LTM or LPS PCRSs and must utilize these projections to be dimensioned correctly.

  9. c

    Boundary

    • geohub.cityoftacoma.org
    Updated Sep 1, 1973
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (1973). Boundary [Dataset]. https://geohub.cityoftacoma.org/datasets/tacoma::boundary-15/about
    Explore at:
    Dataset updated
    Sep 1, 1973
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Tacoma 1973 - 3 foot Aerials for ArcGIS Online/Bing Maps/Google Maps, etc.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgFlight Times:September, 1973 and June 17, 1974Scale: 1” = 400'Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.582581 East longitude: -122.321904 North latitude: 47.331638 South latitude: 47.130024Extent in the item's coordinate system: West longitude: 1123999.606494 East longitude: 1187000.756494 South latitude: 661999.767430 North latitude: 733999.867430

  10. UKOOA - Coordinate systems Guidance

    • data.wu.ac.at
    • gimi9.com
    • +2more
    html
    Updated Nov 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oil and Gas Authority (2016). UKOOA - Coordinate systems Guidance [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/NTY4NTY1ZjktZTQ4Ni00M2Y3LWFhZDYtZjYyZGE0ZGMwODll
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 22, 2016
    Dataset provided by
    North Sea Transition Authority
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This guidance note concerns the management of spatial data for UK Continental Shelf (UKCS) petroleum operations.

  11. a

    NPS - Trails - Geographic Coordinate System

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2018). NPS - Trails - Geographic Coordinate System [Dataset]. https://hub.arcgis.com/items/839d48f9ee7047509d7ea9868819c978
    Explore at:
    Dataset updated
    Mar 30, 2018
    Dataset authored and provided by
    National Park Service
    Area covered
    Description

    This feature class contains lines representing formal and informal trails as well as routes within and across National Park Units. This dataset uses a set of core attributes designed by the NPS enterprise geospatial committee.

  12. k

    USNG 10000m

    • hub.kansasgis.org
    • prep-response-portal.napsgfoundation.org
    • +5more
    Updated Aug 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kansas State Government GIS (2021). USNG 10000m [Dataset]. https://hub.kansasgis.org/datasets/usng-10000m
    Explore at:
    Dataset updated
    Aug 27, 2021
    Dataset authored and provided by
    Kansas State Government GIS
    Area covered
    Description

    USNG is standard that established a nationally consistent grid reference system. It provides a seamless plane coordinate system across jurisdictional boundaries and map scales; it enables precise position referencing with GPS, web map portals, and hardcopy maps. USNG enables a practical system of geo-addresses and a universal map index. This data resides in the GCS 1983 coordinate system and is most suitable for viewing over North America. This layer shows 10,000-meter grid squares.

  13. d

    Parking Citations

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Parking Citations [Dataset]. https://catalog.data.gov/dataset/parking-citations-82ba2
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.lacity.org
    Description

    Parking citations with latitude / longitude in Mercator map projection which is a variant of Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator and is the de facto standard for Web mapping applications. Additional information about Meractor projections - https://en.wikipedia.org/wiki/Mercator_projection The official EPSG identifier for Web Mercator is EPSG:3857. Additional information on projections can be read here: https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Projection_basics_the_GIS_professional_needs_to_know For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/

  14. g

    Cadastral limits of French Polynesia in RGPF — GIS formats (feature service,...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cadastral limits of French Polynesia in RGPF — GIS formats (feature service, wfs, GeoPackage and shapefile) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_6232402bfd15b77f78d55601/
    Explore at:
    Area covered
    French Polynesia
    Description

    Cadastral boundaries of French Polynesia as of 13 January 2022, expressed in the RGPF system in geographical coordinates (epsg code: 4687) with the exception of wfs flows and feature service in WGS84 (epsg: 4326) to ensure better compatibility with web applications. The broadcast formats are the shapefile and the GeoPackage. Note that the cadastral boundaries of the islands of Tahiti, Moorea, Bora-Bora and Huahine are expressed in the RGPF system from simple transformations made from old local coordinate systems. The RGPF coordinates are therefore approaching for these islands, pending more precise transformations, the work of which is under way.

  15. B

    Residential Schools Locations Dataset (Geodatabase)

    • borealisdata.ca
    • search.dataone.org
    Updated May 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 31, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  16. c

    ServiceArea 2005 6in Boundary

    • geohub.cityoftacoma.org
    Updated Jul 1, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (2005). ServiceArea 2005 6in Boundary [Dataset]. https://geohub.cityoftacoma.org/datasets/servicearea-2005-6in-boundary/api
    Explore at:
    Dataset updated
    Jul 1, 2005
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Service Area 2005 - 6 inch Aerials for ArcGIS Online/Bing Maps/Google Maps, etc.Coverage area includes Gig Harbor, Fox Island, McNeil Island, Anderson Island, and more land to the west and north.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgPhotos supplied by Mapcon Mapping.Photos taken in July, 2005.Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.852199 East longitude: -121.962361 North latitude: 47.418869 South latitude: 46.754961Extent in the item's coordinate system: West longitude: 1058000.000000 East longitude: 1274000.000000 South latitude: 527000.000000 North latitude: 764000.000000

  17. c

    2002 Imagery (1ft - Puget Sound Area)

    • geohub.cityoftacoma.org
    • data-carltoncounty.opendata.arcgis.com
    Updated Jun 1, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (2002). 2002 Imagery (1ft - Puget Sound Area) [Dataset]. https://geohub.cityoftacoma.org/datasets/2002-imagery-1ft-puget-sound-area-1
    Explore at:
    Dataset updated
    Jun 1, 2002
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Puget Sound 2002 - 1 foot Aerials for ArcGIS Online/Bing Maps/Google Maps, etc. Includes areas north to Everett; east to Monroe, Sammamish, and Buckley; west to Vashon, Bremerton, and Gig Harbor; South to Roy.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgCompany: Triathlon, Inc.Flight Date: June, 2002Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.695504 East longitude: -121.932319 North latitude: 48.027739 South latitude: 46.980475Extent in the item's coordinate system: West longitude: 1103000.000000 East longitude: 1283000.000000 South latitude: 608000.000000 North latitude: 986000.000000

  18. T

    Utah Grand County Parcels LIR

    • opendata.utah.gov
    application/rdfxml +5
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Utah Grand County Parcels LIR [Dataset]. https://opendata.utah.gov/dataset/Utah-Grand-County-Parcels-LIR/am7z-sm8c/data?pane=feed
    Explore at:
    csv, application/rssxml, application/rdfxml, xml, json, tsvAvailable download formats
    Dataset updated
    Mar 20, 2020
    Area covered
    Grand County, Utah
    Description

    GIS Layer Boundary Geometry:

    GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:

    ftp://ftp.agrc.utah.gov/UtahSGID_Vector/UTM12_NAD83/CADASTRE/LIR_ParcelSchema.zip

    At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.

    Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.

    One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.

    Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).

    Descriptive Attributes:

    Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.

    FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE

    SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systems

    COUNTY_NAME Text 20 - County name including spaces ex. BOX ELDER

    COUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29

    ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessor

    BOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorder

    DISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...

    CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016

    PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000

    PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)

    TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, Other

    TAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17A

    TOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000

    LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600

    PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360

    PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. Residential

    PRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. Y

    HOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1

    SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor Subdivision

    BLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816

    BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.

    FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2

    FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are counted

    BUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968

    EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980

    CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc

    Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)

  19. w

    Railroad_Crossings_MD

    • data.wu.ac.at
    • opendata.maryland.gov
    csv, json, kml, kmz +1
    Updated Sep 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maryland (2016). Railroad_Crossings_MD [Dataset]. https://data.wu.ac.at/schema/data_gov/Y2RjNTM2NDctZWZhYS00ZDY4LWIxNjAtYTFhYTJhZTM2ZTE2
    Explore at:
    zip, csv, kml, kmz, jsonAvailable download formats
    Dataset updated
    Sep 9, 2016
    Dataset provided by
    State of Maryland
    Description

    Summary

    Rail Crossings is a spatial file maintained by the Federal Railroad Administration (FRA) for use by States and railroads.

    Description

    FRA Grade Crossings is a spatial file that originates from the National Highway-Rail Crossing, Inventory Program. The program is to provide information to Federal, State, and local governments, as well as the railroad industry for the improvements of safety at highway-rail crossing.

    Credits

    Federal Railroad Administration (FRA)

    Use limitations

    There are no access and use limitations for this item.

    Extent

    West -79.491008 East -75.178954 North 39.733500 South 38.051719

    Scale Range Maximum (zoomed in) 1:5,000 Minimum (zoomed out) 1:150,000,000

    ArcGIS Metadata ▼►Topics and Keywords ▼►Themes or categories of the resource  transportation

    * Content type  Downloadable Data Export to FGDC CSDGM XML format as Resource Description No

    Temporal keywords  2013

    Theme keywords  Rail

    Theme keywords  Grade Crossing

    Theme keywords  Rail Crossings

    Citation ▼►Title rr_crossings Creation date 2013-03-15 00:00:00

    Presentation formats  * digital map

    Citation Contacts ▼►Responsible party  Individual's name Raquel Hunt Organization's name Federal Railroad Administration (FRA) Contact's position GIS Program Manager Contact's role  custodian

    Responsible party  Organization's name Research and Innovative Technology Administration/Bureau of Transportation Statistics Individual's name National Transportation Atlas Database (NTAD) 2013 Contact's position Geospatial Information Systems Contact's role  distributor

    Contact information  ▼►Phone  Voice 202-366-DATA

    Address  Type  Delivery point 1200 New Jersey Ave. SE City Washington Administrative area DC Postal code 20590 e-mail address answers@BTS.gov

    Resource Details ▼►Dataset languages  * English (UNITED STATES) Dataset character set  utf8 - 8 bit UCS Transfer Format

    Spatial representation type  * vector

    * Processing environment Microsoft Windows 7 Version 6.1 (Build 7600) ; Esri ArcGIS 10.2.0.3348

    Credits Federal Railroad Administration (FRA)

    ArcGIS item properties  * Name USDOT_RRCROSSINGS_MD * Size 0.047 Location withheld * Access protocol Local Area Network

    Extents ▼►Extent  Geographic extent  Bounding rectangle  Extent type  Extent used for searching * West longitude -79.491008 * East longitude -75.178954 * North latitude 39.733500 * South latitude 38.051719 * Extent contains the resource Yes

    Extent in the item's coordinate system  * West longitude 611522.170675 * East longitude 1824600.445629 * South latitude 149575.449134 * North latitude 752756.624659 * Extent contains the resource Yes

    Resource Points of Contact ▼►Point of contact  Individual's name Raquel Hunt Organization's name Federal Railroad Administration (FRA) Contact's position GIS Program Manager Contact's role  custodian

    Resource Maintenance ▼►Resource maintenance  Update frequency  annually

    Resource Constraints ▼►Constraints  Limitations of use There are no access and use limitations for this item.

    Spatial Reference ▼►ArcGIS coordinate system  * Type Projected * Geographic coordinate reference GCS_North_American_1983_HARN * Projection NAD_1983_HARN_StatePlane_Maryland_FIPS_1900_Feet * Coordinate reference details  Projected coordinate system  Well-known identifier 2893 X origin -120561100 Y origin -95444400 XY scale 36953082.294548117 Z origin -100000 Z scale 10000 M origin -100000 M scale 10000 XY tolerance 0.0032808333333333331 Z tolerance 0.001 M tolerance 0.001 High precision true Latest well-known identifier 2893 Well-known text PROJCS["NAD_1983_HARN_StatePlane_Maryland_FIPS_1900_Feet",GEOGCS["GCS_North_American_1983_HARN",DATUM["D_North_American_1983_HARN",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER["False_Easting",1312333.333333333],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-77.0],PARAMETER["Standard_Parallel_1",38.3],PARAMETER["Standard_Parallel_2",39.45],PARAMETER["Latitude_Of_Origin",37.66666666666666],UNIT["Foot_US",0.3048006096012192],AUTHORITY["EPSG",2893]]

    Reference system identifier  * Value 2893 * Codespace EPSG * Version 8.1.1

    Spatial Data Properties ▼►Vector  ▼►* Level of topology for this dataset  geometry only

    Geometric objects  Feature class name USDOT_RRCROSSINGS_MD * Object type  point * Object count 1749

    ArcGIS Feature Class Properties  ▼►Feature class name USDOT_RRCROSSINGS_MD * Feature type Simple * Geometry type Point * Has topology FALSE * Feature count 1749 * Spatial index TRUE * Linear referencing FALSE

    Data Quality ▼►Scope of quality information  ▼►Resource level  attribute Scope description  Attributes The States and railroads maintain their own file and get updated to the FRA. The information is reported to the FRA on the U.S. DOT-ARR Crossing inventory form.

    Attributes The quality of the inventory can vary because a record of grade crossing location is being maintained by each state and railroad that is responsible for maintaining its respective information.

    Lineage ▼►Lineage statement The data was downloaded from the HWY-Rail Crossing Inventory Files. All crossings that were closed or abandon were queried out of the data. All of the crossings with a zero within the latitude or longitude were queried out. Any crossing outside a bounding box of box ((Latitude >= 18 & Latitude <= 72) AND (Longitude >= -171 & Longitude <= -63)) were queried out.

    Geoprocessing history ▼►Process  Date 2013-08-14 10:41:15 Tool location c:\program files (x86)\arcgis\desktop10.0\ArcToolbox\Toolboxes\Data Management Tools.tbx\Project Command issued Project RR_CROSSINGS_MD_USDOT \shagbfs\gis_projects\Railroad_Crossings_MD\Railroad_Crossings_MD.gdb\RR_CROSSINGS_MD_USDOT_83FTHARN PROJCS['NAD_1983_HARN_StatePlane_Maryland_FIPS_1900_Feet',GEOGCS['GCS_North_American_1983_HARN',DATUM['D_North_American_1983_HARN',SPHEROID['GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Lambert_Conformal_Conic'],PARAMETER['False_Easting',1312333.333333333],PARAMETER['False_Northing',0.0],PARAMETER['Central_Meridian',-77.0],PARAMETER['Standard_Parallel_1',38.3],PARAMETER['Standard_Parallel_2',39.45],PARAMETER['Latitude_Of_Origin',37.66666666666666],UNIT['Foot_US',0.3048006096012192]] WGS_1984_(ITRF00)_To_NAD_1983_HARN GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,298.25722356]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]] Include in lineage when exporting metadata No

    Distribution ▼►Distributor  ▼►Contact information  Individual's name Office of Geospatial Information Systems Organization's name Research and Innovative Technology Administration's Bureau of Transportation Statistics (RITA/BTS) Contact's role  distributor

    Contact information  ▼►Phone  Voice 202-366-DATA

    Address  Type  Delivery point 1200 New Jersey Ave. SE City Washington Administrative area DC Postal code 20590 Country US e-mail address answers@bts.gov

    Available format  Name Shapefile Version 2013 File decompression technique no compression applied

    Ordering process  Instructions Call (202-366-DATA), or E-mail (answers@bts.gov) RITA/BTS to request the National Transportation Atlas Databases (NTAD) 2013 DVD. The NTAD DVD can be ordered from the online bookstore at www.bts.gov. Individual datasets from the NTAD can also be downloaded from the Office of Geospatial Information Systems website at http://www.bts.gov/programs/geographic_information_services/

    Transfer options  Transfer size 6.645

    Medium of distribution  Medium name  DVD

    How data is written  iso9660 (CD-ROM) Recording density 650 Density units of measure Megabytes

    Transfer options  Online source  Description  National Transportation Atlas Databases (NTAD) 2013

    Distribution format  * Name Shapefile Version 2013

    Transfer options  * Transfer size 0.047

    Online source  Location http://www.bts.gov/programs/geographic_information_services/

    Fields ▼►Details for object USDOT_RRCROSSINGS_MD ▼►* Type Feature Class * Row count 1749

    Field FID ▼►* Alias FID * Data type OID * Width 4 * Precision 0 * Scale 0 * Field description Internal feature number.

    * Description source ESRI

    * Description of values Sequential unique whole numbers that are automatically generated.

    Field Shape ▼►* Alias Shape * Data type Geometry * Width 0 * Precision 0 * Scale 0 * Field description Feature geometry.

    * Description source ESRI

    * Description of values Coordinates defining the features.

    Field OBJECTID ▼►* Alias OBJECTID * Data type Integer * Width 9 * Precision 9 * Scale 0

    Field CROSSING ▼►* Alias CROSSING * Data type String * Width 7 * Precision 0 * Scale 0 Field description US DOT Valid Crossing ID Number

    Description source FRA

    Field RAILROAD ▼►* Alias RAILROAD * Data type String * Width 4 * Precision 0 * Scale 0 Field description The

  20. Digital Geologic-GIS Map of Tuzigoot National Monument, Arizona (NPS, GRD,...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Tuzigoot National Monument, Arizona (NPS, GRD, GRI, TUZI, TUZI digital map) adapted from a U.S. Geological Survey Bulletin map by Lehner (1958) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-tuzigoot-national-monument-arizona-nps-grd-gri-tuzi-tuzi-digit
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Arizona
    Description

    The Unpublished Digital Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (tuzi_geology.gdb), a 10.1 ArcMap (.MXD) map document (tuzi_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tuzi_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/tuzi_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-rasters-and-shapefiles

Lunar Grid Reference System Rasters and Shapefiles

Explore at:
Dataset updated
Oct 12, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

Search
Clear search
Close search
Google apps
Main menu