Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We constructed a time-series spatial dataset of parcel boundaries for the period 1962-2005, in roughly 4-year intervals, by digitizing historical plat maps for Dane County and combining them with the 2005 GIS digital parcel dataset. The resulting datasets enable the consistent tracking of subdivision and development for all parcels over a given time frame. The process involved 1) dissolving and merging the 2005 digital Dane County parcel dataset based on contiguity and name, 2) further merging 2005 parcels based on the hard copy 2005 Plat book, and then 3) the reverse chronological merging of parcels to reconstruct previous years, at 4-year intervals, based on historical plat books. Additional land use information such as 1) whether a structure was actually constructed (using the companion digitized aerial photo dataset), 2) cover crop, and 3) permeable surface area, can be added to these datasets at a later date.
Community Analyst Dane County - At a Glance Feature service
This data set contains population and housing data from the 1990 census and the 2000 census for Dane County, Wisconsin.
The Dane County Parcel Database was derived from a variety of source maps including U.S. General Land Office survey plats, deed descriptions, subdivision plats, certified survey maps and right-of-way plats. All new parcels are entered into the database using coordinate geometry (COGO). The map provides a representation of the geometry and topology of tax parcels. The attributes are derived from the Dane County Treasurers database. It is not intended to be used for the legal determination of land ownership or to be in any way a substitute for the land ownership and interest descriptions contained in individual deeds.
Major roads in Dane County, Wisconsin. Visit https://dataone.org/datasets/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-ntl%2F159%2F13 for complete metadata about this dataset.
Web map displaying Wisconsin DNR-produced Digital Elevation Model (DEM) and Hillshade image services, along with their index layer, in formats that are clickable and can be symbolized and filtered. This map can also be used as a starting point to create a new map. To open the web map from DNR's GIS Open Data Portal, click the View Metadata: link to the right of the description, then click Open in Map Viewer.
Year-end snapshot of tax parcels in Dane County for the year 2004
Community Analyst Layer: Dashboard source - Areas - Infographics
Land use/land cover was interpreted from historical aerial photographs for selected watersheds in Dane County, Wisconsin. Photography from the 1930s, 1960s, and 1990s were interpreted, resulting in land use/land cover data for three time periods.
Business Analyst Dunkirk Feature service
This service provides an Index intended for use with the WI DNR Image Services DEM from LiDAR (Units in Meters), DEM from LiDAR (Units in Feet), and Hillshade from LiDAR, all updated last updated January 2, 2019. The Index provides information about Flight Year of source LiDAR data and Resolution of Digital Elevation Models (DEMs) and Hillshades that display in those image services, with coverage provided for 67 Wisconsin counties.Details:29 counties with 3-Meter resolution DEMs: Adams (2010), Barron (2005), Burnett (2015), Chippewa (2012), Columbia (2011), Crawford (2010/2011), Door (2002), Dunn (2008), Eau Claire (2013), Grant (2011), Green (2011), Iowa (2010), Jackson (2015), Juneau (2010), Lafayette (2011), Marathon (2012), Monroe (2010), Oconto (2005), Outagamie (2005), Pepin (2013), Pierce (2015), Polk (2015), Richland (2010), Rusk (2011), Sauk (2011), Trempealeau (2014), Vernon (2010), Waupaca (2005), & Wood (2015). 9 counties with 2-meter resolution DEMs: Brown (2010), Calumet (2005), Dodge (2005), Fond du Lac (2011), Green Lake (2009), Jefferson (2005), Racine (2010), Rock (2011), & Winnebago (2014); also the City of Oshkosh and portions of adjacent Townships (2009). 1 county with a 10-foot resolution DEM: Kewaunee (2012). 1 county with a 5-foot resolution DEM: Kenosha (2011). 24 counties with 1-meter resolution DEMs: Ashland (2014), Bayfield (2016), Buffalo (2016), Dane (2017), Douglas (2016), Florence (2017), Forest (2017), Iron (2015), La Crosse (2017), Lincoln (2015), Manitowoc (2015), Marinette (2014), Oneida (2013), Portage (2016), Saint Croix (2014), SEWRPC 2015 (including Milwaukee, Ozaukee, Walworth, Washington, & Waukesha), Shawano (2015), Sheboygan (1.5-meter DEM, 2004), Taylor (2016), & Washburn (2016). 3 counties with 2-foot resolution DEM: Waushara (2017 – Preliminary version), Langlade (2017) & Sawyer (2017). The primary source of the linework in this Index is a WI County Boundaries data layer derived from 1:24,000-scale sources. The delineations of DEM/Hillshade extent provided through this Index are approximate and may not reflect the precise extent of the source LiDAR data from which the DEMs and Hillshades are derived. For more information, visit https://dnr.wi.gov/feedback/ and choose Geographic Information Systems Data as the subject.
Bike Paths. Generally crushed stone within rural areas; paved in urban areas. Includes paths that can accommodate biking, but does not include pedestrian paths.
This data layer is used by the Dane County Bicycle Map and Neighborhood Development Plan Resource Viewer applications.Off Street Type (Off_Type): Shared-Use Path (SP) Path at least 8’ wide and/or striped, designed to accommodate bikes and pedestrians. Connecting Path (CP) Not currently in use.Wide Sidewalk (WS) Sidewalk (>8’) that is intended to accommodate bikes. Pedestrian Path with Bikes Allowed (PP) Path or sidewalk not specifically designed for bikes (< 8’) on the bike network. Municipal Lot (ML) Route through parking lot, etc. (not a defined path passing through or adjacent to a lot).Cycletrack – One-way (CTO) Bike lane/path separated or protected from traffic.Cycletrack – Two-way (CTT) Bike lane/path separated or protected from traffic.Cycletrack – Contraflow (CTC) Bike lane/path separated or protected from traffic.Bike Functional Classification (BFuncClass) Primary (P)Secondary (S)None (N)Bike Functional Classification Planned (BFuncClassP) Primary (P)Secondary (S)None (N)Null (NULL)Primary Name (Pri_Name) Primary name of path.Secondary Name (Sec_Name) Secondary name of path.Type Status (Status)PRG: Programmed - Funded, will most likely be built.CONC: Conceptual - Project was suggested and may have merit but hasn’t been given much review yet.EX: Existing - Existing feature.PLF: Planned – Feasible - In the bike plan, project was given a cursory look and determined to be most likely feasible.PLO: Planned – Obstacles -Unlikely to occur due to physical limitation. Generally do not show on maps.UC: Under Construction - Currently under construction.PLT: Platted - Platted for construction. Generally only coded for City of Madison area.Surface (Surface) Paved (P)Unpaved (U)Bike Path Width (BikePaWidth)Signed (Signed) Bike Route signs or wayfinding signsDirectional Indicator (DIR_INDC) Used to filter bike paths that run parallel to each other.Primary (P)Opposite (O)Source (Source) Ortho [YEAR]; Plan Name; etc.External ID (ExtID) Unique ID
Una división administrativa, órgano administrativo, unidad administrativa, o subdivisión del territorio, es una parte de un país u región, delimitada con el propósito de mejorar, planificar o hacer más eficiente su administración.Las subregiones-provincias como unidad administrativa corresponden a subdivisiones al interior de los departamentos de Colombia e históricamente han sido reconocidas como tales (Mendoza, 1989). La mayoría de los departamentos presentan históricamente este tipo de organización territorial (provincia/subregión) como por ejemplo los departamentos de: Antioquia, Boyacá, Nariño y Cundinamarca, entre otros.El propósito de la publicación de la capa de subregiones-provincias, es facilitar la estandarización de nombres y códigos, la difusión y publicación de resultados de investigaciones demográficas, sociales, económicas, ambientales, judiciales, entre otras, así como, una base para suplir las necesidades de información más detallada, útil en la toma de decisiones para las entidades territoriales en las etapas del ordenamiento territorial y ambiental.Para generar la capa de Subregión-provincia se partió de la revisión de información histórica, cartográfica y publicaciones en los departamentos del país y entidades del orden nacional como el DANE, en donde se identificaron los municipios que les pertenecen a cada una de las subregiones-provincias reconocidas en cada departamento. Posteriormente sobre la base cartográfica de municipios de SIGOT-IGAC de 2012 se realizó la asociación por los códigos de municipio del DANE, para finalmente y con el software GIS ArcMap, se realizó la generalización por el código asignado en la propuesta de la publicación del autor en 2013 “Propuesta de Codificación de Nuevas Divisiones Administrativas” y el nombre identificado para cada subregión-provincia en Colombia.La capa de Subregión-provincia cubre el territorio de Colombia, sobre el cual se identificaron estos tipos de unidades administrativas en los departamentos ypresenta los siguientes atributos:COD_DEPTO: Código DANE del DepartamentoCOD_SUBREGION: Código asignado a la Subregión - ProvinciaNOM_SUBREGION: Nombre de la Subregión - ProvinciaAutor: Josué López Gil (Ingeniero Catastral y Geodesta).Información de referencia: Datos alfanuméricos de referencia:DANE (2005): Tabla de provincias https://www.dane.gov.co/files/censo2005/provincias/subregiones.pdf.Página Web de las gobernaciones y Secretarias de Planeación de los departamentos de Colombia.López Gil, Josué (2013). “Propuesta de Codificación de Nuevas Divisiones Administrativas”, recuperado de http://www.dane.gov.co/candane/images/DT_DANE/Propuesta_de_codificacion.pdfCapa Geográfica de referencia (Polígono): SIGOT-IGAC 2012, Nivel de municipio de las capas temáticas recuperado de http://sigotn.igac.gov.co/sigotn/default.aspx
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We constructed a time-series spatial dataset of parcel boundaries for the period 1962-2005, in roughly 4-year intervals, by digitizing historical plat maps for Dane County and combining them with the 2005 GIS digital parcel dataset. The resulting datasets enable the consistent tracking of subdivision and development for all parcels over a given time frame. The process involved 1) dissolving and merging the 2005 digital Dane County parcel dataset based on contiguity and name, 2) further merging 2005 parcels based on the hard copy 2005 Plat book, and then 3) the reverse chronological merging of parcels to reconstruct previous years, at 4-year intervals, based on historical plat books. Additional land use information such as 1) whether a structure was actually constructed (using the companion digitized aerial photo dataset), 2) cover crop, and 3) permeable surface area, can be added to these datasets at a later date.