100+ datasets found
  1. G

    Mobile GIS Data Collection Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Mobile GIS Data Collection Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/mobile-gis-data-collection-software-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Mobile GIS Data Collection Software Market Outlook



    According to our latest research, the global Mobile GIS Data Collection Software market size reached USD 2.14 billion in 2024, and is anticipated to grow at a robust CAGR of 13.7% during the forecast period, reaching approximately USD 6.42 billion by 2033. This strong growth trajectory is primarily driven by the increasing demand for real-time geospatial data across multiple industries, the proliferation of mobile devices, and the integration of advanced technologies such as IoT and AI into GIS solutions. As organizations globally seek to enhance operational efficiency and decision-making capabilities, the adoption of mobile GIS data collection software continues to accelerate, reshaping the landscape of field data management and spatial analytics.




    One of the pivotal growth factors for the Mobile GIS Data Collection Software market is the rapid digital transformation across industries such as utilities, transportation, agriculture, and government. Organizations are increasingly leveraging geospatial data to streamline field operations, optimize resource allocation, and improve asset management. The shift towards digitized workflows has created a surge in demand for mobile GIS solutions that enable real-time data capture, analysis, and sharing from remote locations. Furthermore, the growing emphasis on smart infrastructure and sustainable urban planning has amplified the need for accurate, up-to-date geographic information, positioning mobile GIS software as a critical tool in supporting these initiatives. The convergence of cloud computing, 5G connectivity, and mobile technologies is further enhancing the capabilities and accessibility of GIS platforms, making them indispensable for modern enterprises.




    Another significant driver is the increasing adoption of IoT and sensor technologies, which are generating vast volumes of spatial data that require efficient collection, processing, and analysis. Mobile GIS data collection software enables seamless integration with IoT devices, allowing for automated data acquisition and real-time monitoring of assets, environmental conditions, and infrastructure. This capability is particularly valuable in sectors like environmental monitoring, utilities management, and agriculture, where timely and accurate geospatial data is essential for informed decision-making. Additionally, advancements in artificial intelligence and machine learning are empowering GIS software to deliver predictive analytics, anomaly detection, and advanced visualization, further expanding the application scope and value proposition of mobile GIS solutions.




    The market is also benefiting from the increasing focus on regulatory compliance and safety standards, particularly in industries such as oil and gas, construction, and transportation. Mobile GIS data collection software facilitates compliance by providing accurate and auditable records of field activities, asset inspections, and environmental assessments. Moreover, the growing need for disaster management, emergency response, and public health surveillance is driving government agencies to invest in robust GIS platforms that support rapid data collection and situational awareness. As a result, vendors are continuously innovating to offer user-friendly, scalable, and secure solutions that cater to the evolving needs of diverse end-users, further fueling market expansion.



    The integration of Mobile Mapping System technology into mobile GIS solutions is revolutionizing the way geospatial data is collected and analyzed. By utilizing vehicles equipped with advanced sensors and cameras, Mobile Mapping Systems enable the rapid and accurate capture of geospatial data across large areas. This technology is particularly beneficial for urban planning, infrastructure management, and environmental monitoring, where timely and precise data is crucial. As industries strive to enhance their operational capabilities, the adoption of Mobile Mapping Systems is becoming increasingly prevalent, providing a competitive edge through improved data accuracy and efficiency.




    Regionally, North America currently dominates the Mobile GIS Data Collection Software market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, high adoption rates of digital soluti

  2. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming GIS Data Collector market! This comprehensive analysis reveals a $2.5B market in 2025, projected to reach $4.2B by 2033, fueled by precision agriculture, infrastructure development, and technological advancements. Explore key trends, drivers, restraints, and leading companies shaping this dynamic sector.

  3. D

    Mobile GIS Data Collection Software Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Mobile GIS Data Collection Software Market Research Report 2033 [Dataset]. https://dataintelo.com/report/mobile-gis-data-collection-software-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Mobile GIS Data Collection Software Market Outlook



    According to our latest research, the global mobile GIS data collection software market size reached USD 1.64 billion in 2024. The market is experiencing robust expansion, driven by the increasing demand for real-time geospatial data across industries. The market is projected to grow at a CAGR of 14.2% from 2025 to 2033, reaching a forecasted value of USD 4.46 billion by 2033. This growth is primarily fueled by the widespread adoption of mobile GIS solutions for field data collection, asset management, and environmental monitoring, as organizations seek efficient, accurate, and scalable geospatial data collection tools to enhance operational decision-making.




    One of the primary growth factors propelling the mobile GIS data collection software market is the rapid digital transformation occurring across multiple sectors, such as utilities, government, agriculture, and transportation. Organizations are increasingly recognizing the value of real-time geospatial data in optimizing workflows, improving resource allocation, and ensuring regulatory compliance. The integration of mobile GIS solutions with Internet of Things (IoT) devices and advanced sensors enables seamless data capture, transmission, and analysis, empowering field teams to make informed decisions on the go. Furthermore, advancements in mobile hardware and connectivity, such as the proliferation of 5G networks, have significantly enhanced the usability and effectiveness of mobile GIS platforms, making them indispensable tools for field operations.




    Another significant driver is the growing emphasis on environmental monitoring and sustainability initiatives worldwide. Governments and private organizations are leveraging mobile GIS data collection software to track environmental parameters, monitor land use changes, and support conservation efforts. The ability to collect, visualize, and analyze spatial data in real time is critical for managing natural resources, assessing environmental risks, and responding to emergencies such as natural disasters or hazardous material spills. As climate change concerns intensify and regulatory frameworks become more stringent, the demand for robust and scalable mobile GIS solutions is expected to rise, further boosting market growth.




    The market is also benefiting from the increasing adoption of cloud-based mobile GIS solutions, which offer unparalleled scalability, flexibility, and cost-effectiveness. Cloud deployment enables organizations to centralize data storage, streamline collaboration, and ensure data integrity across geographically dispersed teams. The shift towards Software-as-a-Service (SaaS) models is reducing the upfront costs associated with traditional GIS deployments and making advanced geospatial analytics accessible to small and medium-sized enterprises (SMEs) as well as large corporations. This democratization of GIS technology is expanding the addressable market and fostering innovation in application development, user experience, and integration capabilities.




    Regionally, North America remains the dominant market, accounting for the largest revenue share in 2024, driven by high technology adoption, a mature IT infrastructure, and the presence of leading GIS software providers. However, Asia Pacific is emerging as the fastest-growing region, supported by rapid urbanization, infrastructure development, and government initiatives promoting digital transformation. Europe also holds a significant market share, particularly in sectors such as utilities management and environmental monitoring. Meanwhile, Latin America and the Middle East & Africa are witnessing increasing investments in GIS technologies, reflecting the global trend toward smarter, data-driven decision-making across industries.



    Component Analysis



    The mobile GIS data collection software market is segmented by component into software and services, each playing a pivotal role in driving the adoption and effectiveness of GIS solutions. The software segment encompasses a wide array of applications designed for data capture, visualization, editing, and analysis on mobile devices. These software solutions are increasingly equipped with advanced features such as offline data collection, real-time synchronization, customizable workflows, and integration with third-party systems. The evolution of user-friendly interfaces and mobile-first design principles has further acceler

  4. G

    GIS Data Collector Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Data Collector Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-data-collector-439983
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming GIS Data Collector market! Explore an $8 billion market projected to grow at a 7% CAGR through 2033. This in-depth analysis covers market size, key trends, leading companies (Garmin, Trimble, Esri), and regional insights. Learn how advancements in data collection technologies are transforming industries.

  5. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-17975
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS Data Collector market is experiencing robust growth, driven by increasing adoption of precision agriculture techniques, expanding infrastructure development projects, and the rising need for accurate geospatial data across various industries. The market's Compound Annual Growth Rate (CAGR) is estimated to be around 8% for the forecast period of 2025-2033, projecting significant market expansion. This growth is fueled by technological advancements in GPS technology, improved data processing capabilities, and the increasing affordability of GIS data collection devices. Key segments driving market expansion include high-precision data collection systems and their application in agriculture, where farmers are increasingly leveraging real-time data for optimized resource management and increased yields. The industrial sector also contributes significantly to market growth, with applications ranging from construction and surveying to utility management and environmental monitoring. While the market faces certain restraints, such as the need for skilled professionals to operate the sophisticated equipment and the potential for data security concerns, these are outweighed by the overwhelming benefits of improved efficiency, accuracy, and cost savings provided by GIS data collectors. The market's regional landscape shows significant participation from North America and Europe, owing to established technological infrastructure and early adoption of advanced GIS technologies. However, rapid growth is expected in the Asia-Pacific region, especially in countries like China and India, fueled by infrastructure development and expanding agricultural activities. Leading players like Garmin, Trimble, and Hexagon are driving innovation and competition, while a growing number of regional players offer more cost-effective solutions. The competitive landscape is characterized by a mix of established global players and regional manufacturers. The established players leverage their technological expertise and extensive distribution networks to maintain market leadership. However, the increasing affordability and accessibility of GIS data collection technologies are attracting new entrants, creating a more dynamic market. Future growth will likely be shaped by the integration of artificial intelligence and machine learning into GIS data collection systems, further enhancing data processing capabilities and automation. The continued development of robust and user-friendly software applications will also contribute to market expansion. Furthermore, the adoption of cloud-based GIS platforms is expected to increase, facilitating greater data sharing and collaboration. This convergence of hardware and software innovations will drive market growth and broaden the applications of GIS data collectors across diverse sectors.

  6. North America Geographic Information System Market Analysis - Size and...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). North America Geographic Information System Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/north-america-gis-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    North America
    Description

    Snapshot img

    North America Geographic Information System Market Size 2025-2029

    The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
    Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Component
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premise
      Cloud
    
    
    Geography
    
      North America
    
        Canada
        Mexico
        US
    

    By Component Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.

    Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.

    Get a glance at the market report of share of various segments Request Free Sample

    Market Dynamics

    Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?

    Rising applications of geographic

  7. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    United States, Canada
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  8. China Dimensions Data Collection: China Administrative Regions GIS Data:...

    • data.nasa.gov
    • datasets.ai
    • +4more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov, China Dimensions Data Collection: China Administrative Regions GIS Data: 1:1M, County Level, 1990 [Dataset]. https://data.nasa.gov/dataset/china-dimensions-data-collection-china-administrative-regions-gis-data-1-1m-county-level-1
    Explore at:
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    China
    Description

    The China Administrative Regions GIS Data: 1:1M, County Level, 1990 consists of geographic boundary data for the administrative regions of China as of 31 December 1990. The data includes the geographical location, area, administrative division code, and county and island name. The data are at a scale of one to one million (1:1M) at the national, provincial, and county level. This data set is produced in collaboration with the Center for International Earth Science Information Network (CIESIN), Chinese Academy of Surveying and Mapping (CASM), and the University of Washington as part of the China in Time and Space (CITAS) project.

  9. u

    West Siberian Lowland Peatland GIS Data Collection

    • data.ucar.edu
    • arcticdata.io
    • +1more
    pdf
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yongwei Sheng (2025). West Siberian Lowland Peatland GIS Data Collection [Dataset]. https://data.ucar.edu/dataset/west-siberian-lowland-peatland-gis-data-collection
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Aug 1, 2025
    Authors
    Yongwei Sheng
    Time period covered
    Jan 1, 1971 - Dec 31, 2001
    Area covered
    Description

    This dataset contains the West Siberian Lowland (WSL) peatland GIS data collection. The collection covers the entire West Siberian lowland and was compiled from a wide array of data under the auspices of the NSF-funded Sensitivity of the West Siberian Lowland to Past and Present Climate project (Smith et al., 2000; Smith et al., 2004). Detailed physical characteristics of 9,691 individual peatlands (patches) were obtained from previously unpublished Russian field and ancillary map data, previously published depth measurements, and field depth and core measurements taken throughout the region during field campaigns in 1999, 2000, and 2001. The data collection features eight layers containing the detailed peatland inventory, political, and hydrographic information. Point data consist of field and laboratory measurements of peat depth, ash content, and bulk density. This research was funded by the National Science Foundation (NSF) Office of Polar Programs (OPP), grant number OPP-9818496.

  10. G

    GIS Data Collector Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). GIS Data Collector Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/gis-data-collector-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Collector Market Outlook



    According to our latest research, the global GIS Data Collector market size reached USD 6.8 billion in 2024, reflecting robust demand across multiple industries. The market is projected to grow at a healthy CAGR of 11.2% from 2025 to 2033, reaching an anticipated value of USD 19.7 billion by 2033. This significant expansion is driven by increasing adoption of geospatial technologies in urban planning, environmental monitoring, and the digital transformation strategies of enterprises worldwide. As per our findings, the surge in smart city initiatives and the proliferation of IoT-based mapping solutions are key contributors to the accelerating growth of the GIS Data Collector market globally.




    The primary growth driver for the GIS Data Collector market is the escalating need for precise and real-time geospatial data across diverse sectors. Urbanization and the rapid expansion of metropolitan regions have intensified the demand for advanced mapping and surveying tools, enabling city planners and government agencies to make informed decisions. The integration of GIS data collectors with cutting-edge technologies such as artificial intelligence, machine learning, and cloud computing has further enhanced data accuracy and accessibility. As organizations seek to optimize resource allocation and improve operational efficiency, the utilization of GIS data collectors has become indispensable in applications ranging from infrastructure management to disaster response and land administration.




    Another crucial factor propelling the market is the growing use of GIS data collectors in environmental monitoring and natural resource management. With the increasing frequency of climate-related events and the global emphasis on sustainability, accurate geospatial data is vital for tracking environmental changes, managing agricultural lands, and monitoring deforestation or water resources. Advanced GIS data collectors equipped with remote sensing and mobile mapping capabilities are enabling stakeholders to gather high-resolution data, analyze spatial patterns, and implement effective conservation strategies. The synergy between GIS and remote sensing technologies is empowering organizations to address environmental challenges more proactively and efficiently.




    Technological advancements in data collection methods have also played a pivotal role in shaping the GIS Data Collector market landscape. The advent of unmanned aerial vehicles (UAVs), mobile mapping systems, and real-time kinematic (RTK) GPS has revolutionized the way geospatial data is captured and processed. These innovations have not only improved the accuracy and speed of data collection but have also reduced operational costs and enhanced safety in field surveys. The integration of GIS data collectors with cloud-based platforms allows seamless data sharing and collaboration, fostering a more connected and agile ecosystem for geospatial data management. As industries continue to digitize their operations, the demand for sophisticated and user-friendly GIS data collection solutions is expected to witness sustained growth.



    Field Data Collection Software has become an integral component in the realm of GIS data collection, providing users with the capability to efficiently gather, process, and analyze geospatial data in real time. This software facilitates seamless integration with various data collection devices, such as GPS receivers and mobile mapping systems, enabling field operatives to capture high-precision data with ease. The adoption of Field Data Collection Software is particularly beneficial in sectors like urban planning and environmental monitoring, where timely and accurate data is crucial for decision-making. By leveraging cloud-based platforms, this software ensures that data collected in the field is instantly accessible to stakeholders, promoting collaboration and enhancing the overall efficiency of geospatial projects. As the demand for real-time data insights grows, the role of Field Data Collection Software in supporting dynamic and responsive GIS operations continues to expand.




    From a regional perspective, North America currently dominates the GIS Data Collector market, followed closely by Europe and Asia Pacific. The strong presence of leading technology providers, substantial investments in smart infrastructure, and suppo

  11. Configuring Esri Collector for High-Accuracy Data Collection

    • storymaps-k12.hub.arcgis.com
    Updated Aug 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri K12 GIS Organization (2021). Configuring Esri Collector for High-Accuracy Data Collection [Dataset]. https://storymaps-k12.hub.arcgis.com/documents/87aa0376199346e4b956cb29ff9c1a5f
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri K12 GIS Organization
    Description

    Summary: How to configure Esri Collector for ArcGIS with a Bad Elf GPS Receiver for High-Accuracy Field Data Collection Storymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 1: Standard 1-LS3-1 - Heredity: Inheritance and Variation of Traits - Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parentsGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS1-2 - Earth’s Place in the Universe - Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night skyGrade level(s) 6-8: Standard MS-LS4-5 - Biological Evolution: Unity and Diversity - Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.Grade level(s) 6-8: Standard MS-LS4-6 - Biological Evolution: Unity and Diversity - Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over timeGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 9-12: Standard HS-LS4-4 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence for how natural selection leads to adaptation of populationsGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:featurebadelfselectgpsApproximate Flesch-Kincaid reading grade level: 9.9. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

  12. d

    China Dimensions Data Collection: Fundamental GIS: Digital Chart of China,...

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). China Dimensions Data Collection: Fundamental GIS: Digital Chart of China, 1:1M, Version 1 [Dataset]. https://catalog.data.gov/dataset/china-dimensions-data-collection-fundamental-gis-digital-chart-of-china-1-1m-version-1
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    SEDAC
    Area covered
    China
    Description

    The Fundamental GIS: Digital Chart of China, 1:1M, Version 1 consists of vector maps of China and surrounding areas. The maps include roads, railroads, drainage systems, contours, populated places, and urbanized areas for China proper, as well as for China and neighboring countries. The maps are at a scale of one to one million (1:1M). This data set is produced in collaboration with the University of Washington as part of the China in Time and Space (CITAS) project and the Columbia University Center for International Earth Science Information Network (CIESIN).

  13. a

    SAR Field Data Collection Form User Guide

    • gis-fema.hub.arcgis.com
    • hub.arcgis.com
    Updated Sep 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). SAR Field Data Collection Form User Guide [Dataset]. https://gis-fema.hub.arcgis.com/documents/1c0d11cbfb724367814669355007f23c
    Explore at:
    Dataset updated
    Sep 10, 2018
    Dataset authored and provided by
    NAPSG Foundation
    Description

    Overview: This document is a reference guide for users of the SAR Field Data Collection Form User Guide. The purpose is to provide a better understanding of how to use the form in the field.

    The underlying technology used with this form is likely to evolve and change over time, therefore technical user guides will be provided as appendices to this document.

    Background: The SAR Field Data Collection Form was created by an interdisciplinary group of first responders, decision-makers and technology specialists from across Federal, State, and Local Urban Search and Rescue Teams – the NAPSG Foundation SAR Working Group. If you have any questions or concerns regarding this document and associated materials, please send a note to comments@publicsafetygis.org.

    Purpose: The SAR Field Data Collection Form is intended to provide a standardized approach to the collection of information during disaster response alongside resource management and tracking of assets.The primary goal of this approach is to obtain situational awareness (where, when, what) for SAR Teams in the field across four relevant themes: Victims that may need assistance or have already been helped. Hazards that must be avoided or mitigated. Damage that have been rapidly assessed for damage, when time and the mission permits. Other mission critical intelligence that vary based on mission type. The secondary goal of this approach is to provide essential elements of information to those not currently on-scene of the disaster. Using the themes above, information and maps can be shared based on “need to know”. If you are a technology specialist looking to deploy this application on your own see the Deployment Kit.

  14. n

    Data from: A new digital method of data collection for spatial point pattern...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Jiang; Xinting Wang (2021). A new digital method of data collection for spatial point pattern analysis in grassland communities [Dataset]. http://doi.org/10.5061/dryad.brv15dv70
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Chinese Academy of Agricultural Sciences
    Inner Mongolia University of Technology
    Authors
    Chao Jiang; Xinting Wang
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.

    Methods 1. Data collection using digital photographs and GIS

    A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).

    Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).

    1. Data reliability assessment

    To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.

    We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.

  15. National Aggregates of Geospatial Data Collection: Population, Landscape,...

    • data.nasa.gov
    • dataverse.harvard.edu
    • +6more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) [Dataset]. https://data.nasa.gov/dataset/national-aggregates-of-geospatial-data-collection-population-landscape-and-climate-estimat
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) data set contains estimates of national-level aggregations in urban, rural, and total designations of territorial extent and population size by biome, climate zone, coastal proximity zone, elevation zone, and population density zone, for 232 statistical areas (countries and other UN recognized territories). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  16. Data from: Indoor GIS Solution for Space Use Assessment

    • ckan.americaview.org
    Updated Aug 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2023). Indoor GIS Solution for Space Use Assessment [Dataset]. https://ckan.americaview.org/dataset/indoor-gis-solution-for-space-use-assessment
    Explore at:
    Dataset updated
    Aug 7, 2023
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.

  17. D

    Geographic Information System Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The global Geographic Information System (GIS) market size was valued at approximately USD 8.1 billion in 2023 and is projected to reach around USD 16.3 billion by 2032, growing at a CAGR of 8.2% during the forecast period. One of the key growth factors driving this market is the increasing adoption of GIS technology across various industries such as agriculture, construction, and transportation, which is enhancing operational efficiencies and enabling better decision-making capabilities.



    Several factors are contributing to the robust growth of the GIS market. Firstly, the increasing need for spatial data in urban planning, infrastructure development, and natural resource management is accelerating the demand for GIS solutions. For instance, governments and municipalities globally are increasingly relying on GIS for planning and managing urban sprawl, transportation systems, and utility networks. This growing reliance on spatial data for efficient resource allocation and policy-making is significantly propelling the GIS market.



    Secondly, the advent of advanced technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and machine learning is enhancing the capabilities of GIS systems. The integration of these technologies with GIS allows for real-time data analysis and predictive analytics, making GIS solutions more powerful and valuable. For example, AI-powered GIS can predict traffic patterns and help in effective city planning, while IoT-enabled GIS can monitor and manage utilities like water and electricity in real time, thus driving market growth.



    Lastly, the rising focus on disaster management and environmental monitoring is further boosting the GIS market. Natural disasters like floods, hurricanes, and earthquakes necessitate the need for accurate and real-time spatial data to facilitate timely response and mitigation efforts. GIS technology plays a crucial role in disaster risk assessment, emergency response, and recovery planning, thereby increasing its adoption in disaster management agencies. Moreover, environmental monitoring for issues like deforestation, pollution, and climate change is becoming increasingly vital, and GIS is instrumental in tracking and addressing these challenges.



    Regionally, the North American market is expected to hold a significant share due to the widespread adoption of advanced technologies and substantial investments in infrastructure development. Asia Pacific is anticipated to witness the fastest growth, driven by rapid urbanization, industrialization, and supportive government initiatives for smart city projects. Additionally, Europe is expected to show steady growth due to stringent regulations on environmental management and urban planning.



    Component Analysis



    The GIS market by component is segmented into hardware, software, and services. The hardware segment includes devices like GPS, imaging sensors, and other data capture devices. These tools are critical for collecting accurate spatial data, which forms the backbone of GIS solutions. The demand for advanced hardware components is rising, as organizations seek high-precision instruments for data collection. The advent of technologies such as LiDAR and drones has further enhanced the capabilities of GIS hardware, making data collection faster and more accurate.



    In the software segment, GIS platforms and applications are used to store, analyze, and visualize spatial data. GIS software has seen significant advancements, with features like 3D mapping, real-time data integration, and cloud-based collaboration becoming increasingly prevalent. Companies are investing heavily in upgrading their GIS software to leverage these advanced features, thereby driving the growth of the software segment. Open-source GIS software is also gaining traction, providing cost-effective solutions for small and medium enterprises.



    The services segment encompasses various professional services such as consulting, integration, maintenance, and training. As GIS solutions become more complex and sophisticated, the need for specialized services to implement and manage these systems is growing. Consulting services assist organizations in selecting the right GIS solutions and integrating them with existing systems. Maintenance and support services ensure that GIS systems operate efficiently and remain up-to-date with the latest technological advancements. Training services are also crucial, as they help users maximize the potential of GIS technologies.



  18. National Aggregates of Geospatial Data Collection: Population, Landscape,...

    • data.nasa.gov
    • dataverse.harvard.edu
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates (PLACE) [Dataset]. https://data.nasa.gov/dataset/national-aggregates-of-geospatial-data-collection-population-landscape-and-climate-estimat-d2984
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates (PLACE) data set contains estimates of national-level aggregations of territorial extent and population size by biome, climate zone, coastal proximity, elevation and slope, a compendium of nearly 300 variables for 222 countries. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  19. u

    Data from: The Long-Term Agroecosystem Research (LTAR) Network Standard GIS...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    zip
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gerardo Armendariz; Alisa W. Coffin; David Archer; Dan Arthur; Alycia Bean; Dawn Browning; Bryan Carlson; Pat Clark; Colton Flynn; Sarah Goslee; Veronica Hall; Chandra Holifield Collins; Hsun-Yi Hsieh; Jane M. F. Johnson; Nicole Kaplan; Mark Kautz; Tim Kettler; Kevin King; Glenn Moglen; Marty Schmer; Vivienne Sclater; Sheri Spiegal; Patrick Stark; Jedediah Stinner; Ken Sudduth; Stephen Teet; Steve Wagner; Lindsey Yasarer (2025). The Long-Term Agroecosystem Research (LTAR) Network Standard GIS Data Layers, 2020 version [Dataset]. http://doi.org/10.15482/USDA.ADC/1521161
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    Ag Data Commons
    Authors
    Gerardo Armendariz; Alisa W. Coffin; David Archer; Dan Arthur; Alycia Bean; Dawn Browning; Bryan Carlson; Pat Clark; Colton Flynn; Sarah Goslee; Veronica Hall; Chandra Holifield Collins; Hsun-Yi Hsieh; Jane M. F. Johnson; Nicole Kaplan; Mark Kautz; Tim Kettler; Kevin King; Glenn Moglen; Marty Schmer; Vivienne Sclater; Sheri Spiegal; Patrick Stark; Jedediah Stinner; Ken Sudduth; Stephen Teet; Steve Wagner; Lindsey Yasarer
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network.
    The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/

  20. National Aggregates of Geospatial Data Collection: Population, Landscape,...

    • data.nasa.gov
    • dataverse.harvard.edu
    • +7more
    Updated May 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2022). National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 4 (PLACE IV) [Dataset]. https://data.nasa.gov/dataset/national-aggregates-of-geospatial-data-collection-population-landscape-and-climate-estimat-6804e
    Explore at:
    Dataset updated
    May 24, 2022
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 4 (PLACE IV) provides measures of population (head counts) and land area (square kilometers) as totals and by urban and rural designation, within multiple biophysical themes for 248 statistical areas (countries and other territories recognized by the United Nations (UN)), UN geographic regions and subregions, and World Bank economic classifications. It improves upon previous versions by providing these estimates at both the national level, and where possible, at subnational administrative level 1 for the years 2000, 2005, 2010, 2015, and 2020, and by 5-year and broad age groups for the year 2010.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Growth Market Reports (2025). Mobile GIS Data Collection Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/mobile-gis-data-collection-software-market

Mobile GIS Data Collection Software Market Research Report 2033

Explore at:
pptx, csv, pdfAvailable download formats
Dataset updated
Sep 1, 2025
Dataset authored and provided by
Growth Market Reports
Time period covered
2024 - 2032
Area covered
Global
Description

Mobile GIS Data Collection Software Market Outlook



According to our latest research, the global Mobile GIS Data Collection Software market size reached USD 2.14 billion in 2024, and is anticipated to grow at a robust CAGR of 13.7% during the forecast period, reaching approximately USD 6.42 billion by 2033. This strong growth trajectory is primarily driven by the increasing demand for real-time geospatial data across multiple industries, the proliferation of mobile devices, and the integration of advanced technologies such as IoT and AI into GIS solutions. As organizations globally seek to enhance operational efficiency and decision-making capabilities, the adoption of mobile GIS data collection software continues to accelerate, reshaping the landscape of field data management and spatial analytics.




One of the pivotal growth factors for the Mobile GIS Data Collection Software market is the rapid digital transformation across industries such as utilities, transportation, agriculture, and government. Organizations are increasingly leveraging geospatial data to streamline field operations, optimize resource allocation, and improve asset management. The shift towards digitized workflows has created a surge in demand for mobile GIS solutions that enable real-time data capture, analysis, and sharing from remote locations. Furthermore, the growing emphasis on smart infrastructure and sustainable urban planning has amplified the need for accurate, up-to-date geographic information, positioning mobile GIS software as a critical tool in supporting these initiatives. The convergence of cloud computing, 5G connectivity, and mobile technologies is further enhancing the capabilities and accessibility of GIS platforms, making them indispensable for modern enterprises.




Another significant driver is the increasing adoption of IoT and sensor technologies, which are generating vast volumes of spatial data that require efficient collection, processing, and analysis. Mobile GIS data collection software enables seamless integration with IoT devices, allowing for automated data acquisition and real-time monitoring of assets, environmental conditions, and infrastructure. This capability is particularly valuable in sectors like environmental monitoring, utilities management, and agriculture, where timely and accurate geospatial data is essential for informed decision-making. Additionally, advancements in artificial intelligence and machine learning are empowering GIS software to deliver predictive analytics, anomaly detection, and advanced visualization, further expanding the application scope and value proposition of mobile GIS solutions.




The market is also benefiting from the increasing focus on regulatory compliance and safety standards, particularly in industries such as oil and gas, construction, and transportation. Mobile GIS data collection software facilitates compliance by providing accurate and auditable records of field activities, asset inspections, and environmental assessments. Moreover, the growing need for disaster management, emergency response, and public health surveillance is driving government agencies to invest in robust GIS platforms that support rapid data collection and situational awareness. As a result, vendors are continuously innovating to offer user-friendly, scalable, and secure solutions that cater to the evolving needs of diverse end-users, further fueling market expansion.



The integration of Mobile Mapping System technology into mobile GIS solutions is revolutionizing the way geospatial data is collected and analyzed. By utilizing vehicles equipped with advanced sensors and cameras, Mobile Mapping Systems enable the rapid and accurate capture of geospatial data across large areas. This technology is particularly beneficial for urban planning, infrastructure management, and environmental monitoring, where timely and precise data is crucial. As industries strive to enhance their operational capabilities, the adoption of Mobile Mapping Systems is becoming increasingly prevalent, providing a competitive edge through improved data accuracy and efficiency.




Regionally, North America currently dominates the Mobile GIS Data Collection Software market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, high adoption rates of digital soluti

Search
Clear search
Close search
Google apps
Main menu