The GIS component of Virginia's NG9-1-1 deployments is moving in waves, with new groups of localities starting the onboarding process every three months. Well into our third wave, new resources and recommendations on GIS related topics are now available on the VGIN 9-1-1 & GIS page. This is available as a large combined document, Next Generation 9-1-1 GIS Recommendations. However since some information is more useful for localities earlier in their project and other information more useful later, we are also posting each section as its own document. The parts include:1) Boundaries in Next Generation 9-1-12) Preparing Your Data and Provisioning into EGDMS3) Outsourced GIS Data Maintenance and NG9-1-14) Emergency Service Boundary Layers5) Attribution6) What's NextSome of the parts are technical that reflect choices and options to make with boundary lines, or specific recommendations on how to create globally unique IDs or format display name fields. In these areas, we hope to share recommendations from Intrado and point users to specific portions of the NENA GIS Data Model Standard for examples. The current version is 1.1, published February 2021.
Links to recordings of the Integrated Services Program and 9-1-1 & Geospatial Services Bureau webinar series, including NG9-1-1 GIS topics such as: data preparation; data provisioning and maintenance; boundary best practices; and extract, transform, and load (ETL). Offerings include:Topic: Virginia Next Generation 9-1-1 Dashboard and Resources Update Description: Virginia recently updated the NG9-1-1 Dashboard with some new tabs and information sources and continues to develop new resources to assist the GIS data work. This webinar provides an overview of changes, a demonstration of new functionality, and a guide to finding and using new resources that will benefit Virginia public safety and GIS personnel with roles in their NG9-1-1 projects. Wednesday 16 June 2021. Recording available at: https://vimeo.com/566133775Topic: Emergency Service Boundary GIS Data Layers and Functions in your NG9-1-1 PSAP Description: Law, Fire, and Emergency Medical Service (EMS) Emergency Service Boundary (ESB) polygons are required elements of the NENA NG9-1-1 GIS data model stack that indicate which agency is responsible for primary response. While this requirement must be met in your Virginia NG9-1-1 deployment with AT&T and Intrado, there are quite a few ways you could choose to implement these polygons. PSAPs and their GIS support must work together to understand how this information will come into a NG9-1-1 i3 PSAP and how it will replace traditional ESN information in order to make good choices while implementing these layers. This webinar discusses:the function of ESNs in your legacy 9-1-1 environment, the role of ESBs in NG9-1-1, and how ESB information appears in your NG9-1-1 PSAP. Wednesday, 22 July 2020. Recording available at: https://vimeo.com/441073056#t=360sTopic: "The GIS Folks Handle That": What PSAP Professionals Need to Know about the GIS Project Phase of Next Generation 9-1-1 DeploymentDescription: Next Generation 9-1-1 (NG9-1-1) brings together the worlds of emergency communication and spatial data and mapping. While it may be tempting for PSAPs to outsource cares and concerns about road centerlines and GIS data provisioning to 'the GIS folks', GIS staff are crucial to the future of emergency call routing and location validation. Data required by NG9-1-1 usually builds on data that GIS staff already know and use for other purposes, so the transition requires them to learn more about PSAP operations and uses of core data. The goal of this webinar is to help the PSAP and GIS worlds come together by explaining the role of the GIS Project in the Virginia NG9-1-1 Deployment Steps, exploring how GIS professionals view NG9-1-1 deployment as a project, and fostering a mutual understanding of how GIS will drive NG9-1-1. 29 January 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225474Topic: Getting Your GIS Data from Here to There: Processes and Best Practices for Extract, Transform and Load (ETL) Description: During the fall of 2019, VITA-ISP staff delivered workshops on "Tools and Techniques for Managing the Growing Role of GIS in Enterprise Software." This session presents information from the workshops related to the process of extracting, transforming, and loading data (ETL), best practices for ETL, and methods for data schema comparison and field mapping as a webinar. These techniques and skills assist GIS staff with their growing role in Next Generation 9-1-1 but also apply to many other projects involving the integration and maintenance of GIS data. 19 February 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225007Topic: NG9-1-1 GIS Data Provisioning and MaintenanceDescription: VITA ISP pleased to announce an upcoming webinar about the NG9-1-1 GIS Data Provisioning and Maintenance document provided by Judy Doldorf, GISP with the Fairfax County Department of Information Technology and RAC member. This document was developed by members of the NG9-1-1 GIS workgroup within the VITA Regional Advisory Council (RAC) and is intended to provide guidance to local GIS and PSAP authorities on the GIS datasets and associated GIS to MSAG/ALI validation and synchronization required for NG9-1-1 services. The document also provides guidance on geospatial call routing readiness and the short- and long-term GIS data maintenance workflow procedures. In addition, some perspective and insight from the Fairfax County experience in GIS data preparation for the AT&T and West solution will be discussed in this webinar. 31 July 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224774Topic: NG9-1-1 Deployment DashboardDescription: I invite you to join us for a webinar that will provide an overview of our NG9-1-1 Deployment Dashboard and information about other online ISP resources. The ISP website has been long criticized for being difficult to use and find information. The addition of the Dashboard and other changes to the website are our attempt to address some of these concerns and provide an easier way to find information especially as we undertake NG9-1-1 deployment. The Dashboard includes a status map of all Virginia PSAPs as it relates to the deployment of NG9-1-1, including the total amount of funding requested by the localities and awards approved by the 9-1-1 Services Board. During this webinar, Lyle Hornbaker, Regional Coordinator for Region 5, will navigate through the dashboard and provide tips on how to more effectively utilize the ISP website. 12 June 2019. Recording not currently available. Please see the Virginia Next Generation 9-1-1 Dashboard and Resources Update webinar recording from 16 June 2021. Topic: PSAP Boundary Development Tools and Process RecommendationDescription: This webinar will be presented by Geospatial Program Manager Matt Gerike and VGIN Coordinator Joe Sewash. With the release of the PSAP boundary development tools and PSAP boundary segment compilation guidelines on the VGIN Clearinghouse in March, this webinar demonstrates the development tools, explains the process model, and discusses methods, tools, and resources available for you as you work to complete PSAP boundary segments with your neighbors. 15 May 2019. Recording available at: https://www.youtube.com/watch?v=kI-1DkUQF9Q&feature=youtu.beTopic: NG9-1-1 Data Preparation - Utilizing VITA's GIS Data Report Card ToolDescription: This webinar, presented by VGIN Coordinator Joe Sewash, Geospatial Program Manager Matt Gerike, and Geospatial Analyst Kenny Brevard will provide an overview of the first version of the tools that were released on March 25, 2019. These tools will allow localities to validate their GIS data against the report card rules, the MSAG and ALI checks used in previous report cards, and the analysis listed in the NG9-1-1 migration proposal document. We will also discuss the purpose of the tools, input requirements, initial configuration, how to run them, and how to make sense of your results. 10 April 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224495Topic: NG9-1-1 PSAP Boundary Best Practice WebinarDescription: During the months of November and December, VITA ISP staff hosted regional training sessions about best practices for PSAP boundaries as they relate to NG9-1-1. These sessions were well attended and very interactive, therefore we feel the need to do a recap and allow those that may have missed the training to attend a makeup session. 30 January 2019. Recording not currently available. Please see the PSAP Boundary Development Tools and Process Recommendation webinar recording from 15 May 2019.Topic: NG9-1-1 GIS Overview for ContractorsDescription: The Commonwealth of Virginia has started its migration to next generation 9-1-1 (NG9-1-1). This migration means that there will be a much greater reliance on geographic information (GIS) to locate and route 9-1-1 calls. VITA ISP has conducted an assessment of current local GIS data and provided each locality with a report. Some of the data from this report has also been included in the localities migration proposal, which identifies what data issues need to be resolved before the locality can migrate to NG9-1-1. Several localities in Virginia utilize a contractor to maintain their GIS data. This webinar is intended for those contractors to review the data in the report, what is included in the migration proposal and how they may be called on to assist the localities they serve. It will still ultimately be up to each locality to determine whether they engage a contractor for assistance, but it is important for the contractor community to understand what is happening and have an opportunity to ask questions about the intent and goals. This webinar will provide such an opportunity. 22 August 2018. Recording not currently available. Please contact us at NG911GIS@vdem.virginia.gov if you are interested in this content.
This document provides an overview on the provisioning of GIS data to support NG9-1-1 services. This document is intended to provide guidance to local GIS and PSAP authorities on the following: The required GIS datasets to support the i3 Emergency Call Routing Function (ECRF) and Location Validation Function (LVF) The validation processes to synchronize the GIS datasets to the Master Street Address Guide (MSAG) and Automatic Location Information (ALI) datasets Geospatial call routing readiness The short term and long term NG9-1-1 GIS data maintenance workflow proceduresAdditional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.
One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.
Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.
The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.
In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.
The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.
The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.
Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.
The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec
The Virginia NG9-1-1 GIS Recommendations document addresses different aspects of data preparation, workflow, and attribution for Virginia localities. This is version is the entire document.The GIS component of Virginia's NG9-1-1 deployments is moving in waves, with new groups of localities starting the onboarding process every three months. Well into our third wave, new resources and recommendations on GIS related topics are now available at VGIN 9-1-1 & GIS. This is available as a large combined document, Next Generation 9-1-1 GIS Recommendations. However since some information is more useful for localities earlier in their project and other information more useful later, we are also posting each section as its own document. The parts include:1) Boundaries in Next Generation 9-1-12) Preparing Your Data and Provisioning into EGDMS3) Outsourced GIS Data Maintenance and NG9-1-14) Emergency Service Boundary Layers5) Attribution6) What's NextSome of the parts are technical that reflect choices and options to make with boundary lines, or specific recommendations on how to create globally unique IDs or format display name fields. In these areas, we hope to share recommendations from Intrado and point users to specific portions of the NENA GIS Data Model Standard for examples. Version 1.1 of the GIS Recommendations is now available.Version 1.0 may be accessed here.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The GIS in Utility Industry market is experiencing robust growth, projected to reach $2.42 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 19.8% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing demand for improved operational efficiency and asset management within utility companies is a primary factor. GIS technologies provide utilities with powerful tools to optimize grid management, streamline maintenance operations, and enhance service delivery. Furthermore, the growing adoption of cloud-based GIS solutions offers enhanced scalability, accessibility, and cost-effectiveness, accelerating market penetration. The integration of advanced technologies such as IoT sensors, AI, and machine learning into GIS platforms further improves data analysis capabilities, enabling predictive maintenance and proactive risk mitigation. While the initial investment in GIS infrastructure can be a restraint for some smaller utility providers, the long-term cost savings and improved operational efficiency are compelling arguments for adoption. Market segmentation reveals a significant demand for software solutions, followed by data and services components. Cloud deployment models are rapidly gaining popularity, surpassing on-premises deployments due to their inherent advantages. Geographically, North America and Europe currently hold significant market share, driven by advanced technological infrastructure and high adoption rates. However, rapidly developing economies in APAC, particularly China and India, are expected to show substantial growth in the coming years, presenting attractive opportunities for market expansion. The competitive landscape is populated by a mix of established players and emerging technology providers, leading to innovation and competitive pricing. The diverse range of GIS solutions available caters to specific utility needs, including electric power, water, gas, and telecom. Software solutions form the core of the market, providing the tools for data visualization, analysis, and management. Data services, including high-resolution imagery and spatial data analytics, are crucial for effective decision-making. The market's future trajectory is positive, propelled by ongoing technological advancements and the urgent need for efficient and resilient utility infrastructure. The increasing focus on sustainability and renewable energy further amplifies the demand for GIS solutions that support grid modernization and the integration of distributed energy resources. The industry's focus will shift towards integrating GIS with other technologies to enhance decision-making processes and operational efficiency, and continued innovation in data analytics and AI will further refine GIS capabilities within the sector.
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
Mosaics are published as ArcGIS image serviceswhich circumvent the need to download or order data. GEO-IDS image services are different from standard web services as they provide access to the raw imagery data. This enhances user experiences by allowing for user driven dynamic area of interest image display enhancement, raw data querying through tools such as the ArcPro information tool, full geospatial analysis, and automation through scripting tools such as ArcPy.Image services are best accessed through the ArcGIS REST APIand REST endpoints (URL's). You can copy the OPS ArcGIS REST API link below into a web browser to gain access to a directory containing all OPS image services. Individual services can be added into ArcPro for display and analysis by using Add Data -> Add Data From Path and copying one of the image service ArcGIS REST endpoint below into the resultant text box. They can also be accessed by setting up an ArcGIS server connectionin ESRI software using the ArcGIS Image Server REST endpoint/URL. Services can also be accessed in open-source software. For example, in QGIS you can right click on the type of service you want to add in the browser pane (e.g., ArcGIS REST Server, WCS, WMS/WMTS) and copy and paste the appropriate URL below into the resultant popup window. All services are in Web Mercator projection.For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.caAvailable Products:ArcGIS REST APIhttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/Image Service ArcGIS REST endpoint / URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServerhttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServerWeb Coverage Services (WCS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WCSServer/Web Mapping Service (WMS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WMSServer/Metadata for all imagery products available in GEO-IDS can be accessed at the links below:South Central Ontario Orthophotography Project (SCOOP) 2023North-Western Ontario Orthophotography Project (NWOOP) 2022Central Ontario Orthophotography Project (COOP) 2021South-Western Ontario Orthophotography Project (SWOOP) 2020Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2019-2020South Central Ontario Orthophotography Project (SCOOP) 2018North-Western Ontario Orthophotography Project (NWOOP) 2017Central Ontario Orthophotography Project (COOP) 2016South-Western Ontario Orthophotography Project (SWOOP) 2015Algonquin Orthophotography Project (2015)Additional Documentation:Ontario Web Raster Services User Guide (Word)Status:Completed: Production of the data has been completed Maintenance and Update Frequency:Annually: Data is updated every yearContact:Geospatial Ontario (GEO), geospatial@ontario.ca
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Collector market size is anticipated to grow from USD 4.5 billion in 2023 to approximately USD 12.3 billion by 2032, at a compound annual growth rate (CAGR) of 11.6%. The growth of this market is largely driven by the increasing adoption of GIS technology across various industries, advances in technology, and the need for effective spatial data management.
An important factor contributing to the growth of the GIS Data Collector market is the rising demand for geospatial information across different sectors such as agriculture, construction, and transportation. The integration of advanced technologies like IoT and AI with GIS systems enables the collection and analysis of real-time data, which is crucial for effective decision-making. The increasing awareness about the benefits of GIS technology and the growing need for efficient land management are also fuelling market growth.
The government sector plays a significant role in the expansion of the GIS Data Collector market. Governments worldwide are investing heavily in GIS technology for urban planning, disaster management, and environmental monitoring. These investments are driven by the need for accurate and timely spatial data to address critical issues such as climate change, urbanization, and resource management. Moreover, regulatory policies mandating the use of GIS technology for infrastructure development and environmental conservation are further propelling market growth.
Another major growth factor in the GIS Data Collector market is the continuous technological advancements in GIS software and hardware. The development of user-friendly and cost-effective GIS solutions has made it easier for organizations to adopt and integrate GIS technology into their operations. Additionally, the proliferation of mobile GIS applications has enabled field data collection in remote areas, thus expanding the scope of GIS technology. The advent of cloud computing has further revolutionized the GIS market by offering scalable and flexible solutions for spatial data management.
Regionally, North America holds the largest share of the GIS Data Collector market, driven by the presence of key market players, advanced technological infrastructure, and high adoption rates of GIS technology across various industries. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, primarily due to rapid urbanization, government initiatives promoting GIS adoption, and increasing investments in smart city projects. Other regions such as Europe, Latin America, and the Middle East & Africa are also experiencing significant growth in the GIS Data Collector market, thanks to increasing awareness and adoption of GIS technology.
The role of a GPS Field Controller is becoming increasingly pivotal in the GIS Data Collector market. These devices are essential for ensuring that data collected in the field is accurate and reliable. By providing real-time positioning data, GPS Field Controllers enable precise mapping and spatial analysis, which are critical for applications such as urban planning, agriculture, and transportation. The integration of GPS technology with GIS systems allows for seamless data synchronization and enhances the efficiency of data collection processes. As the demand for real-time spatial data continues to grow, the importance of GPS Field Controllers in the GIS ecosystem is expected to rise, driving further innovations and advancements in this segment.
The GIS Data Collector market is segmented by component into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of GIS systems. The hardware segment includes devices such as GPS units, laser rangefinders, and mobile GIS devices used for field data collection. The software segment encompasses various GIS applications and platforms used for data analysis, mapping, and visualization. The services segment includes consulting, training, maintenance, and support services provided by GIS vendors and solution providers.
In the hardware segment, the demand for advanced GPS units and mobile GIS devices is increasing, driven by the need for accurate and real-time spatial data collection. These devices are equipped with high-precision sensors and advanced features such as real-time kinematic (RTK) positioning, which enhance
https://www.verifiedindustryinsights.com/privacy-policyhttps://www.verifiedindustryinsights.com/privacy-policy
The market size of the Geographic Information System Analytics Industry is categorized based on Software (GIS Software, 3D GIS Software, Web GIS Software, Mobile GIS Software, Geospatial Analytics Software) and Services (Integration Services, Consulting Services, Managed Services, Support and Maintenance Services) and Hardware (GPS Devices, GIS Data Collectors, 3D Scanners, Drones and UAVs, Servers and Storage Systems) and Data (Geospatial Data, Imagery Data, Spatial Data, Attribute Data, Real-Time Data) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Professional Map Services market is experiencing robust growth, projected to reach $1003.7 million in 2025. While the exact CAGR isn't provided, considering the rapid technological advancements in GIS, AI-powered mapping, and the increasing reliance on location-based services across various sectors, a conservative estimate of the CAGR for the forecast period (2025-2033) would be between 8% and 12%. This growth is fueled by several key drivers. The burgeoning adoption of smart city initiatives necessitates detailed and accurate mapping solutions. Furthermore, the increasing demand for precise navigation systems in the transportation and logistics industries, coupled with the rising popularity of location-based marketing and advertising, significantly contribute to market expansion. The integration of advanced technologies like AI and machine learning into mapping solutions is further enhancing accuracy, efficiency, and functionality, driving market growth. The market is segmented by service type (consulting and advisory, deployment and integration, support and maintenance) and application (utilities, construction, transportation, government, automotive, others), reflecting the diverse needs of various industries. The competitive landscape is characterized by a mix of established players like Esri, Google, TomTom, and Mapbox, alongside emerging innovative companies. Geographic expansion, particularly in developing economies with rapidly urbanizing populations, presents a significant opportunity for growth. However, challenges such as data security concerns and the high cost of advanced mapping technologies could act as potential restraints. The market's future growth hinges on continuous technological advancements and the expansion of data accessibility. The increasing adoption of cloud-based mapping solutions is streamlining data management and improving collaboration. Furthermore, the growing integration of map data into various applications, such as autonomous vehicles and augmented reality experiences, is creating new market avenues. Regulatory changes and data privacy regulations will play a crucial role in shaping the market landscape in the coming years. The diverse application segments ensure market resilience, as growth in one sector can offset potential slowdowns in another. The ongoing expansion into new geographical territories, particularly in Asia-Pacific and other developing regions, presents substantial growth opportunities for market participants.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Analytics market size is projected to grow remarkably from $9.1 billion in 2023 to $21.7 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This substantial growth can be attributed to several factors such as technological advancements in GIS, increasing adoption in various industry verticals, and the rising importance of spatial data for decision-making processes.
The primary growth driver for the GIS Analytics market is the increasing need for accurate and efficient spatial data analysis to support critical decision-making processes across various industries. Governments and private sectors are investing heavily in GIS technology to enhance urban planning, disaster management, and resource allocation. With the world becoming more data-driven, the reliance on GIS for geospatial data has surged, further propelling its market growth. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) with GIS is revolutionizing the analytics capabilities, offering deeper insights and predictive analytics.
Another significant growth factor is the expanding application of GIS analytics in disaster management and emergency response. Natural disasters such as hurricanes, earthquakes, and wildfires have highlighted the importance of GIS in disaster preparedness, response, and recovery. The ability to analyze spatial data in real-time allows for quicker and more efficient allocation of resources, thus minimizing the impact of disasters. Moreover, GIS analytics plays a pivotal role in climate change studies, helping scientists and policymakers understand and mitigate the adverse effects of climate change.
The transportation sector is also a major contributor to the growth of the GIS Analytics market. With the rapid urbanization and increasing traffic congestion in cities, there is a growing demand for effective transport management solutions. GIS analytics helps in route optimization, traffic management, and infrastructure development, thereby enhancing the overall efficiency of transportation systems. The integration of GIS with Internet of Things (IoT) devices and sensors is further enhancing the capabilities of traffic management systems, contributing to the market growth.
Regionally, North America is the largest market for GIS analytics, driven by the high adoption rate of advanced technologies and significant investment in geospatial infrastructure by both public and private sectors. The Asia Pacific region is expected to witness the highest growth rate during the forecast period due to the rapid urbanization, infrastructural developments, and increasing government initiatives for smart city projects. Europe and Latin America are also contributing significantly to the market growth owing to the increasing use of GIS in urban planning and environmental monitoring.
The GIS Analytics market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the continuous advancements in GIS software solutions that offer enhanced functionalities such as data visualization, spatial analysis, and predictive modeling. The increasing adoption of cloud-based GIS software solutions, which offer scalable and cost-effective options, is further driving the growth of this segment. Additionally, open-source GIS software is gaining popularity, providing more accessible and customizable options for users.
The hardware segment includes GIS data collection devices such as GPS units, remote sensing instruments, and other data acquisition tools. This segment is witnessing steady growth due to the increasing demand for high-precision GIS data collection equipment. Technological advancements in hardware, such as the development of LiDAR and drones for spatial data collection, are significantly enhancing the capabilities of GIS analytics. Additionally, the integration of mobile GIS devices is facilitating real-time data collection, contributing to the growth of the hardware segment.
The services segment encompasses consulting, implementation, training, and maintenance services. This segment is expected to grow at a significant pace due to the increasing demand for professional services to manage and optimize GIS systems. Organizations are seeking expert consultants to help them leverage GIS analytics for strategic decision-making and operational efficiency. Additionally, the growing complexity o
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Neighborhood Services Department maintains a listing of city property complaints so residents can get more involved in decisions affecting their neighborhoods.
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
How is this GIS In Telecom Sector Industry segmented?
The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.
GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The automotive geospatial analytics market is experiencing robust growth, driven by increasing demand for advanced driver-assistance systems (ADAS), autonomous vehicles, and precise location-based services. The market's expansion is fueled by the integration of GPS, mapping data, and sensor technologies to enhance vehicle safety, optimize logistics, and improve the overall driving experience. The convergence of big data analytics with geospatial data enables the creation of sophisticated applications for route optimization, predictive maintenance, and real-time traffic management. Key market segments include software and solutions, and services, with the software and solutions segment currently holding a larger market share due to increasing adoption of cloud-based platforms and the development of innovative algorithms for data processing and visualization. The automotive industry's shift towards electrification and connected vehicles further propels the demand for sophisticated geospatial analytics capabilities to manage charging infrastructure, monitor vehicle performance remotely, and improve fleet management efficiency. North America and Europe currently dominate the market, owing to the high adoption rates of advanced automotive technologies and well-established infrastructure. However, rapidly developing economies in Asia-Pacific are witnessing significant growth, presenting lucrative opportunities for market players. Growth is projected to continue, spurred by government initiatives promoting autonomous driving and smart city infrastructure development. However, the market faces challenges including data security concerns, the high cost of implementation, and the need for skilled professionals to manage and analyze complex geospatial data. Leading players in the market are actively investing in research and development to overcome these challenges and capitalize on emerging opportunities. This includes strategic partnerships, acquisitions, and the development of innovative solutions tailored to meet the specific requirements of the automotive industry. The market's future trajectory will likely be shaped by the rate of adoption of autonomous driving technologies, advancements in sensor technology, and the increasing availability of high-quality geospatial data. The overall market outlook remains positive, indicating substantial growth potential over the next decade.
If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below. Category: Civic Vitality and Governance Organization: Allegheny County Department: Geographic Information Systems Group; Department of Administrative Services Temporal Coverage: current Data Notes: Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot Development Notes: none Other: none Related Document(s): Data Dictionary (none) Frequency - Data Change: As needed Frequency - Publishing: As needed Data Steward Name: Eli Thomas Data Steward Email: gishelp@alleghenycounty.us
The Geographic Management Information System (GeoMIS) is a FISMA Moderate minor application built using ArcGIS Server and portal, Microsoft SQL, and a web-facing front-end. The system can be accessed over the internet via https://www.usaidgiswbg.com using a web browser. GeoMIS is based on a commercial off-the-shelf product developed by Esri. Esri is creates geographic information system (GIS) software, web GIS and geodatabase management applications and is based in California. GeoMISIt is maintained by an Israeli company, Systematics (see Attachment 3) which is EsriI's agent in Israel. The mission has an annual maintenance contract with Systematics for GeoMIS. GeoMIS has 100 users from USAID staff (USA Direct Hire and Foreign Service Nationals) and 200 users from USAID contractors and grantees. The system is installed at USAID WBG office in Tel Aviv/Israel inside the computer room in the DMZ. It has no interconnections with any other system.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) market size was valued at approximately USD 8.1 billion in 2023 and is projected to reach around USD 16.3 billion by 2032, growing at a CAGR of 8.2% during the forecast period. One of the key growth factors driving this market is the increasing adoption of GIS technology across various industries such as agriculture, construction, and transportation, which is enhancing operational efficiencies and enabling better decision-making capabilities.
Several factors are contributing to the robust growth of the GIS market. Firstly, the increasing need for spatial data in urban planning, infrastructure development, and natural resource management is accelerating the demand for GIS solutions. For instance, governments and municipalities globally are increasingly relying on GIS for planning and managing urban sprawl, transportation systems, and utility networks. This growing reliance on spatial data for efficient resource allocation and policy-making is significantly propelling the GIS market.
Secondly, the advent of advanced technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and machine learning is enhancing the capabilities of GIS systems. The integration of these technologies with GIS allows for real-time data analysis and predictive analytics, making GIS solutions more powerful and valuable. For example, AI-powered GIS can predict traffic patterns and help in effective city planning, while IoT-enabled GIS can monitor and manage utilities like water and electricity in real time, thus driving market growth.
Lastly, the rising focus on disaster management and environmental monitoring is further boosting the GIS market. Natural disasters like floods, hurricanes, and earthquakes necessitate the need for accurate and real-time spatial data to facilitate timely response and mitigation efforts. GIS technology plays a crucial role in disaster risk assessment, emergency response, and recovery planning, thereby increasing its adoption in disaster management agencies. Moreover, environmental monitoring for issues like deforestation, pollution, and climate change is becoming increasingly vital, and GIS is instrumental in tracking and addressing these challenges.
Regionally, the North American market is expected to hold a significant share due to the widespread adoption of advanced technologies and substantial investments in infrastructure development. Asia Pacific is anticipated to witness the fastest growth, driven by rapid urbanization, industrialization, and supportive government initiatives for smart city projects. Additionally, Europe is expected to show steady growth due to stringent regulations on environmental management and urban planning.
The GIS market by component is segmented into hardware, software, and services. The hardware segment includes devices like GPS, imaging sensors, and other data capture devices. These tools are critical for collecting accurate spatial data, which forms the backbone of GIS solutions. The demand for advanced hardware components is rising, as organizations seek high-precision instruments for data collection. The advent of technologies such as LiDAR and drones has further enhanced the capabilities of GIS hardware, making data collection faster and more accurate.
In the software segment, GIS platforms and applications are used to store, analyze, and visualize spatial data. GIS software has seen significant advancements, with features like 3D mapping, real-time data integration, and cloud-based collaboration becoming increasingly prevalent. Companies are investing heavily in upgrading their GIS software to leverage these advanced features, thereby driving the growth of the software segment. Open-source GIS software is also gaining traction, providing cost-effective solutions for small and medium enterprises.
The services segment encompasses various professional services such as consulting, integration, maintenance, and training. As GIS solutions become more complex and sophisticated, the need for specialized services to implement and manage these systems is growing. Consulting services assist organizations in selecting the right GIS solutions and integrating them with existing systems. Maintenance and support services ensure that GIS systems operate efficiently and remain up-to-date with the latest technological advancements. Training services are also crucial, as they help users maximize the potential of GIS technologies.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global market for GIS Collectors is experiencing robust growth, driven by increasing adoption of location-based services, the expanding need for precise geospatial data across various industries, and the rising availability of affordable and advanced mobile GIS technologies. Our analysis projects a market size of $2.5 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This growth is fueled by several key factors. The construction industry's reliance on precise mapping and asset tracking for project management is a major driver. Furthermore, the utility sector is increasingly leveraging GIS collectors for efficient network management and maintenance. Growing government initiatives promoting smart city development and infrastructure modernization are also significantly contributing to market expansion. Finally, the ongoing development of user-friendly interfaces and cloud-based solutions is simplifying data collection and analysis, making GIS technology accessible to a broader range of users. Despite the positive outlook, the market faces certain challenges. High initial investment costs associated with implementing GIS solutions can be a barrier for smaller organizations. Furthermore, the complexity of data integration and the need for skilled personnel can hinder broader adoption. However, these challenges are being mitigated by the emergence of affordable and user-friendly software solutions and increased availability of training and support resources. The market segmentation reveals a strong presence of established players like Hexagon, Trimble Geospatial, ESRI, Topcon, and Handheld, along with regional players like Wuhan South. Competitive dynamics are characterized by ongoing innovation in hardware and software, resulting in continuous improvements in data accuracy, collection efficiency, and user experience. The market is poised for sustained growth, driven by technological advancements and increasing demand for location intelligence across multiple sectors.
The GIS component of Virginia's NG9-1-1 deployments is moving in waves, with new groups of localities starting the onboarding process every three months. Well into our third wave, new resources and recommendations on GIS related topics are now available on the VGIN 9-1-1 & GIS page. This is available as a large combined document, Next Generation 9-1-1 GIS Recommendations. However since some information is more useful for localities earlier in their project and other information more useful later, we are also posting each section as its own document. The parts include:1) Boundaries in Next Generation 9-1-12) Preparing Your Data and Provisioning into EGDMS3) Outsourced GIS Data Maintenance and NG9-1-14) Emergency Service Boundary Layers5) Attribution6) What's NextSome of the parts are technical that reflect choices and options to make with boundary lines, or specific recommendations on how to create globally unique IDs or format display name fields. In these areas, we hope to share recommendations from Intrado and point users to specific portions of the NENA GIS Data Model Standard for examples. The current version is 1.1, published February 2021.