Facebook
Twitterhttps://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
This collection consists of geospatial data layers and summary data at the country and country sub-division levels that are part of USAID's Demographic Health Survey Spatial Data Repository. This collection includes geographically-linked health and demographic data from the DHS Program and the U.S. Census Bureau for mapping in a geographic information system (GIS). The data includes indicators related to: fertility, family planning, maternal and child health, gender, HIV/AIDS, literacy, malaria, nutrition, and sanitation. Each set of files is associated with a specific health survey for a given year for over 90 different countries that were part of the following surveys:Demographic Health Survey (DHS)Malaria Indicator Survey (MIS)Service Provisions Assessment (SPA)Other qualitative surveys (OTH)Individual files are named with identifiers that indicate: country, survey year, survey, and in some cases the name of a variable or indicator. A list of the two-letter country codes is included in a CSV file.Datasets are subdivided into the following folders:Survey boundaries: polygon shapefiles of administrative subdivision boundaries for countries used in specific surveys. Indicator data: polygon shapefiles and geodatabases of countries and subdivisions with 25 of the most common health indicators collected in the DHS. Estimates generated from survey data.Modeled surfaces: geospatial raster files that represent gridded population and health indicators generated from survey data, for several countries.Geospatial covariates: CSV files that link survey cluster locations to ancillary data (known as covariates) that contain data on topics including population, climate, and environmental factors.Population estimates: spreadsheets and polygon shapefiles for countries and subdivisions with 5-year age/sex group population estimates and projections for 2000-2020 from the US Census Bureau, for designated countries in the PEPFAR program.Workshop materials: a tutorial with sample data for learning how to map health data using DHS SDR datasets with QGIS. Documentation that is specific to each dataset is included in the subfolders, and a methodological summary for all of the datasets is included in the root folder as an HTML file. File-level metadata is available for most files. Countries for which data included in the repository include: Afghanistan, Albania, Angola, Armenia, Azerbaijan, Bangladesh, Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burundi, Cape Verde, Cambodia, Cameroon, Central African Republic, Chad, Colombia, Comoros, Congo, Congo (Democratic Republic of the), Cote d'Ivoire, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Eswatini (Swaziland), Ethiopia, Gabon, Gambia, Ghana, Guatemala, Guinea, Guyana, Haiti, Honduras, India, Indonesia, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lesotho, Liberia, Madagascar, Malawi, Maldives, Mali, Mauritania, Mexico, Moldova, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Russia, Rwanda, Samoa, Sao Tome and Principe, Senegal, Sierra Leone, South Africa, Sri Lanka, Sudan, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, Uzbekistan, Viet Nam, Yemen, Zambia, Zimbabwe
Facebook
TwitterA listing of web services published from the authoritative East Baton Rouge Parish Geographic Information System (EBRGIS) data repository. Services are offered in Esri REST, and the Open Geospatial Consortium (OGC) Web Mapping Service (WMS) or Web Feature Service (WFS) formats.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository serves as a comprehensive data archive for GIS data utilized in the development of TXSELECT (tx.select.tamu.edu). Contents include raw, processed, and intermediate GIS datasets (watershed boundaries, land cover, soil type, census blocks etc.), used to create input files for TXSELECT using the code available at this site - https://github.com/shubhamjain15/TX-SELECT.
Facebook
TwitterSafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).
SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created to be used in my Capstone Project for the Google Data Analytics Professional Certificate. Data was web scraped from the state websites to combine the GIS information like FIPS, latitude, longitude, and County Codes by both number and Mailing Number.
RStudio was used for this web scrape and join. For details on how it was done you can go to the following link for my Github repository.
Feel free to follow my Github or LinkedIn profile to see what I end up doing with this Dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features.
5 cross-sections in Adobe Illustrator format.
Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data.
3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data repository hosts datasets that are used for students to practice spatial operations introduced in R-as-GIS lectures and workshops.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Polygon layer depicting school districts in Blacksburg November 2017. This data was created by the GIS team from the Town of Blacksburg and has been curated by Virginia Tech University Libraries in order to provide access to the data. This data is meant for general use only. Virginia Tech’s University Library is acting as a steward for this data and any questions about its use should refer to our Terms of Use Page.
Facebook
TwitterGapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live includes:
Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
Raw DEM and Soils data
Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
ArcGIS Map Packages
Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web
Facebook
TwitterThis dataset tracks the updates made on the dataset "PLACES: County Data (GIS Friendly Format), 2023 release" as a repository for previous versions of the data and metadata.
Facebook
TwitterThis dataset tracks the updates made on the dataset "PLACES: County Data (GIS Friendly Format), 2023 release" as a repository for previous versions of the data and metadata.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wabuska-ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross-section.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups include: new/revised datasets (paleo-geothermal features, geochemistry, geophysics, heat flow, slip and dilation, potential structures, geothermal power plants, positive and negative test sites), machine learning model input grids, machine learning models (Artificial Neural Network (ANN), Extreme Learning Machine (ELM), Bayesian Neural Network (BNN), Principal Component Analysis (PCA/PCAk), Non-negative Matrix Factorization (NMF/NMFk) - supervised and unsupervised), original NV Play Fairway data and models, and NV cultural/reference data.
See layer descriptions for additional metadata. Smaller GIS resource packages (by category) can be found in the related datasets section of this submission. A submission linking the full codebase for generating machine learning output models is available through the "Related Datasets" link on this page, and contains results beyond the top picks present in this compilation.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Town of Blacksburg, Virginia August 2018 map. Line layer depicting thoroughfares in Blacksburg. This data is being preserved and distributed by Virginia Tech University Libraries. This data is meant for general use only. Virginia Tech’s University Library is acting as a steward for this data and any questions about its use should refer to the Town of Blacksburg Engineering & GIS group.
Facebook
TwitterEarth Data Analysis Center (EDAC) at The University of New Mexico (UNM) develops, manages, and enhances the New Mexico Resource Geographic Information System (RGIS) Program and Clearinghouse. Nationally, NM RGIS is among the largest of state-based programs for digital geospatial data and information and continues to add to its data offerings, services, and technology.
The RGIS Program mission is to develop and expand geographic information and use of GIS technology, creating a comprehensive GIS resource for state and local governments, educational institutions, nonprofit organizations, and private businesses; to promote geospatial information and GIS technology as primary analytical tools for decision makers and researchers; and to provide a central Clearinghouse to avoid duplication and improve information transfer efficiency.
As a repository for digital geospatial data acquired from local and national public agencies and data created expressly for RGIS, the clearinghouse serves as a major hub in New Mexico’s network for inter-agency and intergovernmental coordination, data sharing, information transfer, and electronic communication. Data sets available for download include political and administrative boundaries, place names and locations, census data (current and historical), 30 years of digital orthophotography, 80 years of historic aerial photography, satellite imagery, elevation data, transportation data, wildfire boundaries and natural resource data.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Line layer depicting perennial streams in Blacksburg June 2017. This data was created by the GIS team from the Town of Blacksburg and has been curated by Virginia Tech University Libraries in order to provide access to the data. This data is meant for general use only. Virginia Tech’s University Library is acting as a steward for this data and any questions about its use should refer to our Terms of Use Page.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Polygon layer depicting mixed use zones in Blacksburg June 2017. This data was created by the GIS team from the Town of Blacksburg and has been curated by Virginia Tech University Libraries in order to provide access to the data. This data is meant for general use only. Virginia Tech’s University Library is acting as a steward for this data and any questions about its use should refer to our Terms of Use Page.
Facebook
TwitterThe dataset contains locations and attributes of Embassies, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. A database provided by the DC Office of the Chief Technology Officer (OCTO) identified Embassy locations and DC GIS staff geo-processed the data to the Master Address Repository (MAR).
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
As part of the “Geospatial Assessment of Women Employment and Business Opportunities in the Energy Sector” project, open-source Gender-related spatial data was collected for 31 Small Island Developing States (SIDS) across the globe, resulting in curated and thoroughly documented geodatabases (GDBs) that are now ready to be explored!
Fifty-nine spatial layers were identified and then researched for each country, covering the following categories: Demographics and Population | Renewable Energy | Energy Access | Education | Jobs and Finance | Digital Inclusion | Transportation | Safety | Amenities | Climate/Earth | Law/Policy/Government.
However, not every country GDB contains all 59 data layers, as this was dependent on the availability of open-source data in each SIDS. Users are encouraged to check the accompanying metadata excel file for more information on the datasets in each GDB, the vintage, and the source utilized.
Facebook
Twitterhttps://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
This collection consists of geospatial data layers and summary data at the country and country sub-division levels that are part of USAID's Demographic Health Survey Spatial Data Repository. This collection includes geographically-linked health and demographic data from the DHS Program and the U.S. Census Bureau for mapping in a geographic information system (GIS). The data includes indicators related to: fertility, family planning, maternal and child health, gender, HIV/AIDS, literacy, malaria, nutrition, and sanitation. Each set of files is associated with a specific health survey for a given year for over 90 different countries that were part of the following surveys:Demographic Health Survey (DHS)Malaria Indicator Survey (MIS)Service Provisions Assessment (SPA)Other qualitative surveys (OTH)Individual files are named with identifiers that indicate: country, survey year, survey, and in some cases the name of a variable or indicator. A list of the two-letter country codes is included in a CSV file.Datasets are subdivided into the following folders:Survey boundaries: polygon shapefiles of administrative subdivision boundaries for countries used in specific surveys. Indicator data: polygon shapefiles and geodatabases of countries and subdivisions with 25 of the most common health indicators collected in the DHS. Estimates generated from survey data.Modeled surfaces: geospatial raster files that represent gridded population and health indicators generated from survey data, for several countries.Geospatial covariates: CSV files that link survey cluster locations to ancillary data (known as covariates) that contain data on topics including population, climate, and environmental factors.Population estimates: spreadsheets and polygon shapefiles for countries and subdivisions with 5-year age/sex group population estimates and projections for 2000-2020 from the US Census Bureau, for designated countries in the PEPFAR program.Workshop materials: a tutorial with sample data for learning how to map health data using DHS SDR datasets with QGIS. Documentation that is specific to each dataset is included in the subfolders, and a methodological summary for all of the datasets is included in the root folder as an HTML file. File-level metadata is available for most files. Countries for which data included in the repository include: Afghanistan, Albania, Angola, Armenia, Azerbaijan, Bangladesh, Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burundi, Cape Verde, Cambodia, Cameroon, Central African Republic, Chad, Colombia, Comoros, Congo, Congo (Democratic Republic of the), Cote d'Ivoire, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Eswatini (Swaziland), Ethiopia, Gabon, Gambia, Ghana, Guatemala, Guinea, Guyana, Haiti, Honduras, India, Indonesia, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lesotho, Liberia, Madagascar, Malawi, Maldives, Mali, Mauritania, Mexico, Moldova, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Russia, Rwanda, Samoa, Sao Tome and Principe, Senegal, Sierra Leone, South Africa, Sri Lanka, Sudan, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, Uzbekistan, Viet Nam, Yemen, Zambia, Zimbabwe