100+ datasets found
  1. Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky (NPS, GRD, GRI, MACA, READ digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Gildersleeve (1975) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-ready-quadrangle-kentucky-nps-grd-gri-maca-read-digital-ma
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (read_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (read_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (read_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (read_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (read_geology_metadata.txt or read_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. a

    Public Land Survey System Data (Public)

    • hub.arcgis.com
    Updated Jun 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CanadianCounty (2024). Public Land Survey System Data (Public) [Dataset]. https://hub.arcgis.com/maps/d4d420c325bb43ceadd5dafd6688a6af
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    CanadianCounty
    Area covered
    Description

    Layers in this dataset represent Public Land Survey System subdivisions for Canadian County. Included are Townships, Sections, Quarter Sections and Government Lots. This data was created from 2019 to 2021 as part of a project to update county parcel data in partnership with ProWest & Associates (https://www.prowestgis.com/) and CEC Corporation (https://www.connectcec.com/). Corners were located to the quarter section level and additional corners were determined for the South Canadian River meanders based on the original government surveys. Quarter section corners were located using Certified Corner Records ( filed by Oklahoma licensed professional surveyors with the Oklahoma Department of Libraries where those records included coordinates. When a corner record could not be found or did not include coordinates, other interpolation methods were employed. These included connecting known corner record locations to unknown corners using data from filed subdivisions or from highway plans on record with the Oklahoma Department of Transportation. Where no corner records with coordinates were available and no interpolation methods could be used, aerial inspection was used to locate corners as the last option.Corner location accuracy varies as the method of locating the corner varies. For corners located using Certified Corner Records, accuracy is high depending on the age of the corner record and can possibly be less than 1 U.S. Foot. For corners located using interpolation methods, accuracy depends on the additional material used to interpolate the corner. In general, newer subdivisions and highway plans yield higher accuracy. For meander corners located using original government surveys, accuracy will be low due to the age of those surveys which date to the 1870's at the earliest. Additionally, corners that were located with aerials as the last available option cannot be assumed to be accurate.The data was built at the quarter section level first by connecting located corners and larger subdivisions were created from the quarter sections. For townships that extend into Grady County, township lines were only roughly located outside sections not in Canadian County.

  4. V

    Survey Control Monument Points

    • data.virginia.gov
    • gisdata-arlgis.opendata.arcgis.com
    • +1more
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arlington County - GIS Portal (2025). Survey Control Monument Points [Dataset]. https://data.virginia.gov/dataset/survey-control-monument-points
    Explore at:
    html, zip, kml, arcgis geoservices rest api, geojson, csvAvailable download formats
    Dataset updated
    Aug 8, 2025
    Dataset provided by
    Arlington County, VA - GIS Mapping Center
    Authors
    Arlington County - GIS Portal
    Description

    Survey Control Monuments in Arlington County with valid documentation.

  5. SEDRI Ethiopia firm survey (GIS)

    • redivis.com
    application/jsonl +7
    Updated Jul 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data for Development Initiative (2022). SEDRI Ethiopia firm survey (GIS) [Dataset]. https://redivis.com/datasets/rxq3-9x047we25
    Explore at:
    application/jsonl, spss, stata, parquet, arrow, csv, sas, avroAvailable download formats
    Dataset updated
    Jul 18, 2022
    Dataset provided by
    Redivis Inc.
    Authors
    Data for Development Initiative
    Area covered
    Ethiopia
    Description

    Usage

    The prefixes f1_ and f2_ indicate that variables correspond to either wave 1 or wave 2, respectively.

  6. m

    American Community Survey Viewer developed by BPDA Research & GIS

    • gis.data.mass.gov
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). American Community Survey Viewer developed by BPDA Research & GIS [Dataset]. https://gis.data.mass.gov/datasets/american-community-survey-viewer-developed-by-bpda-research-gis
    Explore at:
    Dataset updated
    Mar 12, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Description

    American Community Survey Viewer developed by Boston Planning and Development Agency (BPDA) Research & GIS The American Community Survey (ACS) from the U.S. Census Bureau is an ongoing survey that provides vital information on a yearly basis about our nation and its people. Information from the survey generates data that help inform how trillions of dollars in federal funds are distributed each year.

  7. o

    Oregon Public Land Survey

    • geohub.oregon.gov
    • data.oregon.gov
    • +3more
    Updated Jun 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). Oregon Public Land Survey [Dataset]. https://geohub.oregon.gov/datasets/oregon-geo::oregon-public-land-survey
    Explore at:
    Dataset updated
    Jun 20, 2023
    Dataset authored and provided by
    State of Oregon
    Area covered
    Description

    This data layer is an element of the Oregon GIS Framework. This theme contains PLS lines for the State of Oregon. This PLS theme includes donation claims lands. Attributes in this theme show Township Range and Section values.

  8. w

    Kentucky Geological Survey: Geospatial Data Library

    • data.wu.ac.at
    html
    Updated Mar 23, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Kentucky Geological Survey: Geospatial Data Library [Dataset]. https://data.wu.ac.at/odso/edx_netl_doe_gov/YjU5ODExODEtODljYi00YmY3LWE4NTUtOGQ5MzEwYzJiMzA2
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 23, 2015
    Area covered
    Kentucky, e6b005132ff975e458d3ea0a449441e7311b0d76
    Description

    Maps and GIS data provided by The Kentucky Geological Survey; includes maps, elevation, geology data, hydrology data, and transportation information.

  9. a

    Airborne Geophysical Surveys (GIS data, polygon features) - Open Government

    • open.alberta.ca
    Updated Jan 1, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2003). Airborne Geophysical Surveys (GIS data, polygon features) - Open Government [Dataset]. https://open.alberta.ca/dataset/gda-dig_2003_0013
    Explore at:
    Dataset updated
    Jan 1, 2003
    Description

    Stratagex Ltd was contracted by the AGS in 2001 to compile a catalogue of all existing ground and airborne geophysical survey data contained in the archived mining assessment reports of the AGS, supplemented where possible with information on non-exclusive and proprietary surveys from exploration industry and other sources. This data set shows the airborne survey locations and detailed information about the survey including: Type of survey flown [fixed wing or helicopter. barometric (constant elevation) or drape (topographic contour following), Year of data acquisition and contractor, Description of the system flown [any one or combination of magnetics, VLF-EM, radiometrics, time domain electromagnetics (TDEM), frequency domain electromagnetics (FEM)]., Survey specifications (flying height, line direction, line separation, tie line spacing and direction), Location of the survey (corner co-ordinates of the survey area in UTM and latitude and longitude), Outline of the actual survey coverage (plan map of survey block outline on planimetric base), Owner of the data at time of acquisition (and contact person if available), Assessment of data quality (where possible, based on the maps or profiles made available by the Contractor/Mining Company who holds the data), Availability of the data for use or acquisition by the AGS (for compilation, resale, in-house research), Media and format that data is available on (paper, digital images, raw digital data, etc.), Asking price for acquiring the data (if available) and the conditions under which it would be made available.

  10. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-17975
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS Data Collector market is experiencing robust growth, driven by increasing adoption of precision agriculture techniques, expanding infrastructure development projects, and the rising need for accurate geospatial data across various industries. The market's Compound Annual Growth Rate (CAGR) is estimated to be around 8% for the forecast period of 2025-2033, projecting significant market expansion. This growth is fueled by technological advancements in GPS technology, improved data processing capabilities, and the increasing affordability of GIS data collection devices. Key segments driving market expansion include high-precision data collection systems and their application in agriculture, where farmers are increasingly leveraging real-time data for optimized resource management and increased yields. The industrial sector also contributes significantly to market growth, with applications ranging from construction and surveying to utility management and environmental monitoring. While the market faces certain restraints, such as the need for skilled professionals to operate the sophisticated equipment and the potential for data security concerns, these are outweighed by the overwhelming benefits of improved efficiency, accuracy, and cost savings provided by GIS data collectors. The market's regional landscape shows significant participation from North America and Europe, owing to established technological infrastructure and early adoption of advanced GIS technologies. However, rapid growth is expected in the Asia-Pacific region, especially in countries like China and India, fueled by infrastructure development and expanding agricultural activities. Leading players like Garmin, Trimble, and Hexagon are driving innovation and competition, while a growing number of regional players offer more cost-effective solutions. The competitive landscape is characterized by a mix of established global players and regional manufacturers. The established players leverage their technological expertise and extensive distribution networks to maintain market leadership. However, the increasing affordability and accessibility of GIS data collection technologies are attracting new entrants, creating a more dynamic market. Future growth will likely be shaped by the integration of artificial intelligence and machine learning into GIS data collection systems, further enhancing data processing capabilities and automation. The continued development of robust and user-friendly software applications will also contribute to market expansion. Furthermore, the adoption of cloud-based GIS platforms is expected to increase, facilitating greater data sharing and collaboration. This convergence of hardware and software innovations will drive market growth and broaden the applications of GIS data collectors across diverse sectors.

  11. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    Canada, United States
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  12. a

    BLM Alaska Public Land Survey System (PLSS) Cadastral National Spatial Data...

    • gbp-blm-egis.hub.arcgis.com
    • gimi9.com
    • +3more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM Alaska Public Land Survey System (PLSS) Cadastral National Spatial Data Infrastructure (CadNSDI) [Dataset]. https://gbp-blm-egis.hub.arcgis.com/maps/b656d43688c441e4ba445d617ffb0181
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Bureau of Land Management
    Area covered
    Description

    BLM Alaska PLSS Intersected: This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non rectangular components of the PLSS) Meandered Water, Corners and Conflicted Areas (known areas of gaps or overlaps between Townships or state boundaries). The Entity-Attribute section of this metadata describes these components in greater detail.

  13. U

    Compilation of Geospatial Data (GIS) for the Mineral Industries and Related...

    • data.usgs.gov
    • datasets.ai
    • +1more
    Updated Oct 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abraham Padilla; Spencer Buteyn; Elizabeth Neustaedter; Donya Otarod; Erica Wolfe; Philip Freeman; Michael Trippi; Ryan Kemna; Loyd Trimmer; Karine Renaud; Philip Szczesniak; Ji Moon; Jaewon Chung; Connie Dicken; Jane Hammarstrom (2023). Compilation of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Select Countries in Southwest Asia [Dataset]. http://doi.org/10.5066/P9OCRYYO
    Explore at:
    Dataset updated
    Oct 24, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Abraham Padilla; Spencer Buteyn; Elizabeth Neustaedter; Donya Otarod; Erica Wolfe; Philip Freeman; Michael Trippi; Ryan Kemna; Loyd Trimmer; Karine Renaud; Philip Szczesniak; Ji Moon; Jaewon Chung; Connie Dicken; Jane Hammarstrom
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Sep 30, 2021
    Area covered
    Asia, West Asia
    Description

    The U.S. Geological Survey (USGS) has compiled a geodatabase containing mineral-related geospatial data for 10 countries of interest in Southwest Asia (area of study): Afghanistan, Cambodia, Laos, India, Indonesia, Iran, Nepal, North Korea, Pakistan, and Thailand. The data can be used in analyses of the extractive fuel and nonfuel mineral industries and related economic and physical infrastructure integral for the successful operation of the mineral industries within the area of study as well as the movement of mineral products across domestic and global markets. This geodatabase reflects the USGS ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports for the countries in the area of study. The geodatabase contains data feat ...

  14. l

    Jefferson County KY Urban Tree Canopy Study GIS Data - 2019 (FTP)

    • data.lojic.org
    • s.cnmilf.com
    • +2more
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2022). Jefferson County KY Urban Tree Canopy Study GIS Data - 2019 (FTP) [Dataset]. https://data.lojic.org/documents/9eb8d61fbbcc4192b77c061dd7ff2dc5
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Louisville/Jefferson County Information Consortium
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Download UrbanTreeCanopy_2019.zip. The following information was produced from the 2019 Urban Tree Canopy Assessment for Jefferson County, KY sponsored by Trees Louisville. It is based on 2019 LOJIC Base Map data. It includes shapefiles and rasters. The study was performed by the University of Vermont Spatial Analysis Lab.

  15. b

    BLM National Public Land Survey System Polygons - National Geospatial Data...

    • navigator.blm.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BLM National Public Land Survey System Polygons - National Geospatial Data Asset (NGDA) [Dataset]. https://navigator.blm.gov/data/SQLUQJUW_6919/blm-rea-cyr-2013-current-2010s-mean-january-temperature
    Explore at:
    Description

    This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific production or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys), and the Bureau of Census 2015 Cartographic State Boundaries. The Entity-Attribute section of this metadata describes these components in greater detail.

    Please note that the data on this site, although published at regular intervals, may not be the most current PLSS data that is available from the BLM. Updates to the PLSS data at the BLM State Offices may have occurred since this data was published. To ensure users have the most current data, please refer to the links provided in the PLSS CadNSDI Data Set Availability accessible here: https:gis.blm.govEGISDownloadDocsPLSS_CadNSDI_Data_Set_Availability.pdf or contact the BLM PLSS Data Set Manager.

  16. Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky (NPS, GRD,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky (NPS, GRD, GRI, MACA, MACV digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Haynes (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-mammoth-cave-quadrangle-kentucky-nps-grd-gri-maca-macv-dig
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Mammoth Cave, Kentucky
    Description

    The Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (macv_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (macv_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (macv_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (macv_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (macv_geology_metadata.txt or macv_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. Digital Surficial Geologic-GIS Map of Hopewell Culture National Historical...

    • catalog.data.gov
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Surficial Geologic-GIS Map of Hopewell Culture National Historical Park and Vicinity, Ohio (NPS, GRD, GRI, HOCU, HOCU_surficial digital map) adapted from a Ohio Department of Natural Resources, Division of Geological Survey Digital Data File map by the Ohio Geological Survey and Aden, the principal compiler (2023) [Dataset]. https://catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-hopewell-culture-national-historical-park-and-vicini
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Ohio
    Description

    The Digital Surficial Geologic-GIS Map of Hopewell Culture National Historical Park and Vicinity, Ohio is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (hocu_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (hocu_surficial_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (hocu_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (hocu_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (hocu_surficial_geology_metadata_faq.pdf). Please read the hocu_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Ohio Department of Natural Resources, Division of Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (hocu_surficial_geology_metadata.txt or hocu_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. Z

    ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gillreath-Brown, Andrew; Nagaoka, Lisa; Wolverton, Steve (2024). ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al. (2019) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2572017
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Department of Anthropology, Washington State University
    Department of Geography and the Environment, University of North Texas
    Authors
    Gillreath-Brown, Andrew; Nagaoka, Lisa; Wolverton, Steve
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)

    **When using the GIS data included in these map packages, please cite all of the following:

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018

    OVERVIEW OF CONTENTS

    This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:

    Raw DEM and Soils data

    Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)

    DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.

    DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.

    Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)

    Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).

    Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).

    ArcGIS Map Packages

    Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).

    Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.

    Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).

    Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).

    For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."

    LICENSES

    Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton

    CONTACT

    Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web

  19. a

    Airborne Geophysical Surveys (GIS data, polygon features)

    • catalogue.arctic-sdi.org
    • open.canada.ca
    Updated Dec 8, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2006). Airborne Geophysical Surveys (GIS data, polygon features) [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=EXPLORATION
    Explore at:
    Dataset updated
    Dec 8, 2006
    Description

    Stratagex Ltd was contracted by the AGS in 2001 to compile a catalogue of all existing ground and airborne geophysical survey data contained in the archived mining assessment reports of the AGS, supplemented where possible with information on non-exclusive and proprietary surveys from exploration industry and other sources. This data set shows the airborne survey locations and detailed information about the survey including: Type of survey flown [fixed wing or helicopter. barometric (constant elevation) or drape (topographic contour following), Year of data acquisition and contractor, Description of the system flown [any one or combination of magnetics, VLF-EM, radiometrics, time domain electromagnetics (TDEM), frequency domain electromagnetics (FEM)]., Survey specifications (flying height, line direction, line separation, tie line spacing and direction), Location of the survey (corner co-ordinates of the survey area in UTM and latitude and longitude), Outline of the actual survey coverage (plan map of survey block outline on planimetric base), Owner of the data at time of acquisition (and contact person if available), Assessment of data quality (where possible, based on the maps or profiles made available by the Contractor/Mining Company who holds the data), Availability of the data for use or acquisition by the AGS (for compilation, resale, in-house research), Media and format that data is available on (paper, digital images, raw digital data, etc.), Asking price for acquiring the data (if available) and the conditions under which it would be made available.

  20. Site Establishment Survey - Terrestrial Species Stressor Monitoring [ds2831]...

    • gis.data.ca.gov
    • data.cnra.ca.gov
    • +4more
    Updated May 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2019). Site Establishment Survey - Terrestrial Species Stressor Monitoring [ds2831] [Dataset]. https://gis.data.ca.gov/datasets/CDFW::site-establishment-survey-terrestrial-species-stressor-monitoring-ds2831/about
    Explore at:
    Dataset updated
    May 23, 2019
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The TSM study areas were the USDA-defined Great Valley (GV) and Mojave Desert (MD) ecoregions, truncated to California state boundaries. A grid of hexagons adapted from the USDA Forest Inventory and Analysis program, each having an approximate radius of 2,600 meters, was used as the sampling frame. Initially, a spatially-balanced, stratified random sampling approach was used to identify hexagons to be included in the study. Vegetation maps from a variety of sources were used to calculate the total cover of key lifeforms within each ecoregion. These lifeforms were determined based not only on distinct categories of vegetation, but also on habitats or features known or thought to be important to wildlife. A spatially-balanced random sample was drawn for the Mojave Desert ecoregion, while site selection in the Great Valley was more opportunistic based on the greater proportion of private land ownership.To select discrete survey locations within the hexagons, a finer-scale grid of approximately 2,400 points spaced 100 meters apart was created within each selected hexagon; for parcels that did not encompass an entire hexagon, the 100-meter grid was limited to the area within the parcel boundary. Generally, two survey points located 1,000-2,000 meters apart were selected in each hexagon. Initial points were identified by assigning random numbers to all of the grid points in each hexagon, and then selecting the lowest numbered points that met other constraints, including stratified sampling goals and land access restrictions. On rare occasions, more than two sites were located within a given hexagon, but the preferred practice was to avoid duplication or monitoring in adjacent hexagons. Study sites were not repeated between the two years, so that the entire monitoring effort comprised unique locations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky (NPS, GRD, GRI, MACA, READ digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Gildersleeve (1975) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-ready-quadrangle-kentucky-nps-grd-gri-maca-read-digital-ma
Organization logo

Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky (NPS, GRD, GRI, MACA, READ digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Gildersleeve (1975)

Explore at:
Dataset updated
Nov 25, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Description

The Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (read_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (read_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (read_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (read_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (read_geology_metadata.txt or read_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu