Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OQIPRWhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OQIPRW
Advancing Research on Nutrition and Agriculture (AReNA) is a 6-year, multi-country project in South Asia and sub-Saharan Africa funded by the Bill and Melinda Gates Foundation, being implemented from 2015 through 2020. The objective of AReNA is to close important knowledge gaps on the links between nutrition and agriculture, with a particular focus on conducting policy-relevant research at scale and crowding in more research on this issue by creating data sets and analytical tools that can benefit the broader research community. Much of the research on agriculture and nutrition is hindered by a lack of data, and many of the datasets that do contain both agriculture and nutrition information are often small in size and geographic scope. AReNA team constructed a large multi-level, multi-country dataset combining nutrition and nutrition-relevant information at the individual and household level from the Demographic and Health Surveys (DHS) with a wide variety of geo-referenced data on agricultural production, agroecology, climate, demography, and infrastructure (GIS data). This dataset includes 60 countries, 184 DHS, and 122,473 clusters. Over one thousand geospatial variables are linked with DHS. The entire dataset is organized into 13 individual files: DHS_distance, DHS_livestock, DHS_main, DHS_malaria, DHS NDVI, DHS_nightlight, DHS_pasture and climate (mean), DHS_rainfall, DHS_soil, DHS_SPAM, DHS_suit, DHS_temperature, and DHS_traveltime.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27
It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.
Facebook
TwitterGIS database with the vector drawings of the structures documented.
Facebook
TwitterThis page is an index of all the data sources that the GIS Center has to offer. If you're looking for anything, you'll find it here!
Facebook
TwitterThe U.S. Army Corps of Engineers Geospatial Open Data provides shared and trusted USACE geospatial data, services and applications for use by our partner agencies and the public.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.
One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.
Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.
The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.
Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.
Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.
The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio
Facebook
TwitterHEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Facebook
TwitterThe Digital Data Series encompasses a broad range of digital data, including computer programs, interpreted results of investigations, comprehensive reviewed data bases, spatial data sets, digital images and animation, and multimedia presentations that are not intended for printed release. Scientific reports in this series cover a wide variety of subjects on all facets of U.S. Geological Survey investigations and research that are of lasting scientific interest and value. Releases in the Digital Data Series offer access to scientific information that is available in digital form; the information is primarily for viewing, processing, and (or) analyzing by computer
Available on CD Rom through the Map and Data Library. CD #008.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to a coding error when we created the newer versions of this database, the record does not link to the new versions. You should use them in all cases:
Guth, P. (2025). DEMIX GIS Database Version 4 (Version 4) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17538186
This database supports the work of the Digital Elevation Model Intercomparison eXperiment (DEMIX) working group (Strobl and others, 2021; Guth and others, 2021; Bielski and others, 2023, 2024). The two files have the database in CSV format, and a metadata file describing the contents of each field in the database.
To understand the use of the database, see the prepint (Bielski and others, 2023).
Changes to version 2 which is the only version you should use:
1. Added 2 new areas, Stateline and Canary Islands East which should have minimal differences between the DSM and the DTM and no significant changes over the last 20 years.
2. Added the country to the database
3. Added a number of areas in France
4. Added some additional tiles for a few areas
5. Total number of tiles almost doubled
6. Now using GDAL to compute the datum shift, horizontal and vertical, for USGS 3DEP
7. Fixed some anomalies computing pixel-is-area DEMs
8. Recomputed all the reference data and the version 1.0 GIS database (Guth, 2022)
9. New file naming conventions
References:
Bielski, C.; López-Vázquez, C.; Guth. P.L.; Grohmann, C.H. and the TMSG DEMIX Working Group, 2023. DEMIX Wine Contest Method Ranks ALOS AW3D30, COPDEM, and FABDEM as Top 1” Global DEMs: https://arxiv.org/pdf/2302.08425.pdf
Bielski, C.; López-Vázquez, C.; Grohmann, C.H.; Guth. P.L.; Hawker, L.; Gesch, D.; Trevisani, S.; Herrera-Cruz, V.; Riazanoff, S.; Corseaux, A.; Reuter, H.; Strobl, P., 2024. Novel approach for ranking DEMs: Copernicus DEM improves one arc second open global topography. IEEE Transactions on Geoscience & Remote Sensing. vol. 62, pp. 1-22, 2024, Art no. 4503922, https://doi.org/10.1109/TGRS.2024.3368015
Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; López-Vázquez, C.; Carabajal, C.C.; Albinet, C.; Strobl, P. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. https://doi.org/10.3390/rs13183581
Strobl, P.A.; Bielski, C.; Guth, P.L.; Grohmann, C.H.; Muller, J.P.; López-Vázquez, C.; Gesch, D.B.; Amatulli, G.; Riazanoff, S.; Carabajal, C. The Digital Elevation Model Intercomparison eXperiment DEMIX, a community based approach at global DEM benchmarking. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2021, 395–400. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021
Facebook
TwitterTIGER/Line Shapefiles contain current geographic extent and boundaries of both legal and statistical entities (which have no governmental standing) for the United States, the District of Columbia, Puerto Rico, and the Island areas. Feature shapefiles represent the point, line, and polygon features in the MTDB (e.g., roads and rivers). Relationship files contain additional attribute information users can join to the shapefiles. Both the feature shapefiles and relationship files reflect updates made in the database. To see how the geographic entities, relate to one another, please see our geographic hierarchy diagrams here:https://www.census.gov/programs-surveys/geography/guidance/hierarchy.html
Facebook
TwitterThe data release for the geologic and structure maps of the Wallace 1 x 2 degrees quadrangle, Montana and Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1509-A (Harrison and others, 2000). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 16,754 square kilometer, geologically complex Wallace quadrangle in northern Idaho and western Montana, at a publication scale of 1:250,000. The map covers primarily Lake, Mineral, Sanders and Shoshone Counties, but also includes minor parts of Flathead, Lincoln, and Missoula Counties. These GIS data supersede those in the interpretive report: Harrison, J.E., Griggs, A.B., Wells, J.D., Kelley, W.N., Derkey, P.D., and EROS Data Center, 2000, Geologic and structure maps of the Wallace 1- x 2- degree quadrangle, Montana and Idaho: a digital database: U.S. Geological Survey Miscellaneous Investigations Series Map I-1509-A, https://pubs.usgs.gov/imap/i1509a/.
Facebook
TwitterHEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Facebook
TwitterData set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.
Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472
Purpose:
The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.
Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia
Facebook
TwitterExpands the use of internal data for creating Geographic Information System (GIS) maps. SSA's Database Systems division developed a map users guide for GIS data object publishing and was made available in an internal Sharepoint site for access throughout the agency. The guide acts as the reference for publishers of GIS objects across the life-cycle in our single, central geodatabase implementation.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains 3 land use shapefiles and 1 model grid shapefile for the Petaluma River Watershed in California. .
Facebook
TwitterThe Digital Data Series encompasses a broad range of digital data, including computer programs, interpreted results of investigations, comprehensive reviewed data bases, spatial data sets, digital images and animation, and multimedia presentations that are not intended for printed release. Scientific reports in this series cover a wide variety of subjects on all facets of U.S. Geological Survey investigations and research that are of lasting scientific interest and value. Releases in the Digital Data Series offer access to scientific information that is available in digital form; the information is primarily for viewing, processing, and (or) analyzing by computer
Available on CD Rom at the Map and Data Library. CD #007.
Facebook
TwitterLink to State of South Dakota GIS Data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This was developed for a forthcoming paper. A reference will be posted here when it is published.
This database supports the work of the Digital Elevation Model Intercomparison eXperiment (DEMIX) working group (Strobl and others, 2021; Guth and others, 2021; Bielski and others, 2024). The four files have the database tables in CSV format.
This version adds to CopDEM, ALOS AW3D30, and FABDEM:
The database contains 1381 tiles, about 10x10 km, in 140 areas. The tiles are based on the local projected grid, a change from earlier versions of the DEMIX database which used geographic outlines.
It does not consider the low altitude coastal DEMs; for those use version 3 (https://zenodo.org/records/13331458 ).
References:
Bielski, C.; López-Vázquez, C.; Grohmann, C.H.; Guth. P.L.; Hawker, L.; Gesch, D.; Trevisani, S.; Herrera-Cruz, V.; Riazanoff, S.; Corseaux, A.; Reuter, H.; Strobl, P., 2024. Novel approach for ranking DEMs: Copernicus DEM improves one arc second open global topography. IEEE Transactions on Geoscience & Remote Sensing. vol. 62, pp. 1-22, 2024, Art no. 4503922, https://doi.org/10.1109/TGRS.2024.3368015
Guth, P.L.; Trevisani, S.; Grohmann, C.H.; Lindsay, J.; Gesch, D.; Hawker, L.; Bielski, C. Ranking of 10 Global One-Arc-Second DEMs Reveals Limitations in Terrain Morphology Representation. Remote Sens. 2024, 16, 3273. https://doi.org/10.3390/rs16173273
Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; López-Vázquez, C.; Carabajal, C.C.; Albinet, C.; Strobl, P. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. https://doi.org/10.3390/rs13183581
Minár, J., Ian S. Evans, Marián Jenčo, 2020, A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction, Earth-Science Reviews, Volume 211, 103414, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2020.103414
Strobl, P.A.; Bielski, C.; Guth, P.L.; Grohmann, C.H.; Muller, J.P.; López-Vázquez, C.; Gesch, D.B.; Amatulli, G.; Riazanoff, S.; Carabajal, C. The Digital Elevation Model Intercomparison eXperiment DEMIX, a community based approach at global DEM benchmarking. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2021, 395–400. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021
Uhe, P., Lucas, C., Hawker, L., Brine, M., Wilkinson, H., Cooper, A., & Sampson, C. (2025). FathomDEM: an improved global terrain map using a hybrid vision transformer model. Environmental Research Letters, 20(3), 034002. https://doi.org/10.1088/1748-9326/ada972
Facebook
TwitterDownloadable GIS data about various basin fields.
Website states: " This website report brings together abundant current and existing datasets and concepts in a common and integrated format to advance our understanding of the distribution, geologic framework, burial history, and geochemical character of the basin's oil, gas, and coal resources. Among the anticipated benefits of these digital data layers are improvements in: 1) resource assessment estimates and methodology, 2) exploration strategy, 3) basin models, and 4) energy use policies."
Facebook
TwitterThis data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.
All previously released versions of this data are available on the DCP Website: BYTES of the BIG APPLE. Current version: 202510
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OQIPRWhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OQIPRW
Advancing Research on Nutrition and Agriculture (AReNA) is a 6-year, multi-country project in South Asia and sub-Saharan Africa funded by the Bill and Melinda Gates Foundation, being implemented from 2015 through 2020. The objective of AReNA is to close important knowledge gaps on the links between nutrition and agriculture, with a particular focus on conducting policy-relevant research at scale and crowding in more research on this issue by creating data sets and analytical tools that can benefit the broader research community. Much of the research on agriculture and nutrition is hindered by a lack of data, and many of the datasets that do contain both agriculture and nutrition information are often small in size and geographic scope. AReNA team constructed a large multi-level, multi-country dataset combining nutrition and nutrition-relevant information at the individual and household level from the Demographic and Health Surveys (DHS) with a wide variety of geo-referenced data on agricultural production, agroecology, climate, demography, and infrastructure (GIS data). This dataset includes 60 countries, 184 DHS, and 122,473 clusters. Over one thousand geospatial variables are linked with DHS. The entire dataset is organized into 13 individual files: DHS_distance, DHS_livestock, DHS_main, DHS_malaria, DHS NDVI, DHS_nightlight, DHS_pasture and climate (mean), DHS_rainfall, DHS_soil, DHS_SPAM, DHS_suit, DHS_temperature, and DHS_traveltime.