100+ datasets found
  1. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  2. d

    Data from: CrimeMapTutorial Workbooks and Sample Data for ArcView and...

    • catalog.data.gov
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). CrimeMapTutorial Workbooks and Sample Data for ArcView and MapInfo, 2000 [Dataset]. https://catalog.data.gov/dataset/crimemaptutorial-workbooks-and-sample-data-for-arcview-and-mapinfo-2000-3c9be
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Description

    CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.

  3. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, Canada, United States, United Kingdom, Germany, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  4. d

    Converting analog interpretive data to digital formats for use in database...

    • datadiscoverystudio.org
    Updated Jun 6, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2008). Converting analog interpretive data to digital formats for use in database and GIS applications [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ed9bb80881c64dc38dfc614d7d454022/html
    Explore at:
    Dataset updated
    Jun 6, 2008
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  5. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  6. d

    SafeGraph GIS Data | Global Coverage | 52M+ Places

    • datarade.ai
    .csv
    Updated Mar 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2023). SafeGraph GIS Data | Global Coverage | 52M+ Places [Dataset]. https://datarade.ai/data-products/safegraph-gis-data-global-coverage-41m-places-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    SafeGraph
    Area covered
    United States of America, United Kingdom, Canada
    Description

    SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

    SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation.

  7. Geographic Information System GIS Software Market Report | Global Forecast...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System GIS Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Software Market Outlook



    The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.



    One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.



    Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.



    Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.



    Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.



    Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.



    Component Analysis



    The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.



    Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and

  8. m

    GeoStoryTelling

    • data.mendeley.com
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manuel Gonzalez Canche (2023). GeoStoryTelling [Dataset]. http://doi.org/10.17632/nh2c5t3vf9.1
    Explore at:
    Dataset updated
    Apr 21, 2023
    Authors
    Manuel Gonzalez Canche
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.

  9. d

    Yellowstone Sample Collection - database

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Yellowstone Sample Collection - database [Dataset]. https://catalog.data.gov/dataset/yellowstone-sample-collection-database
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This database was prepared using a combination of materials that include aerial photographs, topographic maps (1:24,000 and 1:250,000), field notes, and a sample catalog. Our goal was to translate sample collection site locations at Yellowstone National Park and surrounding areas into a GIS database. This was achieved by transferring site locations from aerial photographs and topographic maps into layers in ArcMap. Each field site is located based on field notes describing where a sample was collected. Locations were marked on the photograph or topographic map by a pinhole or dot, respectively, with the corresponding station or site numbers. Station and site numbers were then referenced in the notes to determine the appropriate prefix for the station. Each point on the aerial photograph or topographic map was relocated on the screen in ArcMap, on a digital topographic map, or an aerial photograph. Several samples are present in the field notes and in the catalog but do not correspond to an aerial photograph or could not be found on the topographic maps. These samples are marked with “No” under the LocationFound field and do not have a corresponding point in the SampleSites feature class. Each point represents a field station or collection site with information that was entered into an attributes table (explained in detail in the entity and attribute metadata sections). Tabular information on hand samples, thin sections, and mineral separates were entered by hand. The Samples table includes everything transferred from the paper records and relates to the other tables using the SampleID and to the SampleSites feature class using the SampleSite field.

  10. e

    GIS vector data for sample locations and plots associated with the Hillslope...

    • portal.edirepository.org
    • search.dataone.org
    kml, zip
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrence Band (2016). GIS vector data for sample locations and plots associated with the Hillslope Study in Macon County, NC [Dataset]. http://doi.org/10.6073/pasta/7229e742973a9da49e27fa43fd21f977
    Explore at:
    zip(not specified kb), kmlAvailable download formats
    Dataset updated
    2016
    Dataset provided by
    EDI
    Authors
    Lawrence Band
    Time period covered
    Nov 14, 2013 - Sep 20, 2016
    Area covered
    Macon County
    Description

    The Hillslope Study sites represent a gradient of landscapes, including forested, valley agriculture, and mountain housing developments. These locations and plots were used to collect samples of various matrices for numerous analyses at differing intervals. The data set consists of Open Office spreadsheet and other files that document all the Hillslope Study locations.

  11. d

    GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-gis-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Kenya, Philippines, United States of America, Egypt, Thailand, Taiwan, United Arab Emirates, Saudi Arabia, Malaysia, Nigeria
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live includes:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  12. v

    Next Generation 9-1-1 GIS Data Model Templates

    • vgin.vdem.virginia.gov
    • hub.arcgis.com
    Updated Jul 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2021). Next Generation 9-1-1 GIS Data Model Templates [Dataset]. https://vgin.vdem.virginia.gov/documents/59a8f883329340d0afa7de60adad81e8
    Explore at:
    Dataset updated
    Jul 29, 2021
    Dataset authored and provided by
    Virginia Geographic Information Network
    Description

    There are many useful strategies for preparing GIS data for Next Generation 9-1-1. One step of preparation is making sure that all of the required fields exist (and sometimes populated) before loading into the system. While some localities add needed fields to their local data, others use an extract, transform, and load process to transform their local data into a Next Generation 9-1-1 GIS data model, and still others may do a combination of both.There are several strategies and considerations when loading data into a Next Generation 9-1-1 GIS data model. The best place to start is using a GIS data model schema template, or an empty file with the needed data layout to which you can append your data. Here are some resources to help you out. 1) The National Emergency Number Association (NENA) has a GIS template available on the Next Generation 9-1-1 GIS Data Model Page.2) The NENA GIS Data Model template uses a WGS84 coordinate system and pre-builds many domains. The slides from the Virginia NG9-1-1 User Group meeting in May 2021 explain these elements and offer some tips and suggestions for working with them. There are also some tips on using field calculator. Click the "open" button at the top right of this screen or here to view this information.3) VGIN adapted the NENA GIS Data Model into versions for Virginia State Plane North and Virginia State Plane South, as Virginia recommends uploading in your local coordinates and having the upload tools consistently transform your data to the WGS84 (4326) parameters required by the Next Generation 9-1-1 system. These customized versions only include the Site Structure Address Point and Street Centerlines feature classes. Address Point domains are set for address number, state, and country. Street Centerline domains are set for address ranges, parity, one way, state, and country. 4) A sample extract, transform, and load (ETL) for NG9-1-1 Upload script is available here.Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.

  13. v

    NG9-1-1 GIS Recommendations - Part 3 - Outsourced GIS Data Maintenance and...

    • vgin.vdem.virginia.gov
    • hub.arcgis.com
    Updated Apr 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2020). NG9-1-1 GIS Recommendations - Part 3 - Outsourced GIS Data Maintenance and NG9-1-1 [Dataset]. https://vgin.vdem.virginia.gov/documents/83679c21f635404884f8d445aa21cd53
    Explore at:
    Dataset updated
    Apr 30, 2020
    Dataset authored and provided by
    Virginia Geographic Information Network
    Description

    The GIS component of Virginia's NG9-1-1 deployments is moving in waves, with new groups of localities starting the onboarding process every three months. Well into our third wave, new resources and recommendations on GIS related topics are now available on the VGIN 9-1-1 & GIS page. This is available as a large combined document, Next Generation 9-1-1 GIS Recommendations. However since some information is more useful for localities earlier in their project and other information more useful later, we are also posting each section as its own document. The parts include:1) Boundaries in Next Generation 9-1-12) Preparing Your Data and Provisioning into EGDMS3) Outsourced GIS Data Maintenance and NG9-1-14) Emergency Service Boundary Layers5) Attribution6) What's NextSome of the parts are technical that reflect choices and options to make with boundary lines, or specific recommendations on how to create globally unique IDs or format display name fields. In these areas, we hope to share recommendations from Intrado and point users to specific portions of the NENA GIS Data Model Standard for examples. The current version is 1.1, published February 2021.

  14. d

    Data from: GIS data: Sediment Sample Locations Collected in July 2013 from...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). GIS data: Sediment Sample Locations Collected in July 2013 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 13BIM05) [Dataset]. https://catalog.data.gov/dataset/sediment-sample-locations-collected-in-july-2013-from-the-northern-chandeleur-islands-loui
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Chandeleur Islands, Louisiana
    Description

    As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in July 2013. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to understand better the depositional and erosional processes that drive the morphologic evolution of barrier islands over annual to interannual timescales (1 to 5 years). Between June 2010 and April 2011, in response to the Deepwater Horizon oil spill, the State of Louisiana constructed a sand berm extending more than 14 kilometers (km) along the northern Chandeleur Islands platform. The construction of the berm provided a unique opportunity to investigate how this new sediment source interacts with and affects the morphologic evolution of the barrier-island system. Data collected from this study can be used to describe differences in the physical characteristics and spatial distribution of sediments both along the axis of the berm and also along transects across the berm and onto the adjacent barrier island. Comparison of these data with data from prior sampling efforts can provide information about sediment interactions and movement between the berm and the natural island platform, improving our understanding of short-term morphologic change and processes in this barrier-island system. This data series serves as an archive of sediment data collected in July 2013 from the Chandeleur Islands sand berm and adjacent barrier-island environments. Data products, including descriptive core logs, core photographs and x-radiographs, results of sediment grain-size analyses, sample location maps, and Geographic Information System (GIS) data files with accompanying formal Federal Geographic Data Committee (FDGC) metadata, can be downloaded from https://pubs.usgs.gov/ds/894/downloads.html.

  15. Spearfish Sample Database

    • zenodo.org
    application/gzip
    Updated Aug 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larry Batten; Larry Batten (2023). Spearfish Sample Database [Dataset]. http://doi.org/10.5281/zenodo.8296851
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Aug 30, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Larry Batten; Larry Batten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Spearfish
    Description

    The spearfish sample database is being distributed to provide users with a solid database on which to work for learning the tools of GRASS. This document provides some general information about the database and the map layers available. With the release of GRASS 4.1, the GRASS development staff is pleased to announce that the sample data set spearfish is also being distributed. The spearfish data set covers two topographic 1:24,000 quads in western South Dakota. The names of the quads are Spearfish and Deadwood North, SD. The area covered by the data set is in the vicinity of Spearfish, SD and includes a majority of the Black Hills National Forest (i.e., Mount Rushmore). It is anticipated that enough data layers will be provided to allow users to use nearly all of the GRASS tools on the spearfish data set. A majority of this spearfish database was initially provided to USACERL by the EROS Data Center (EDC) in Sioux Falls, SD. The GRASS Development staff expresses acknowledgement and thanks to: the U.S. Geological Survey (USGS) and EROS Data Center for allowing us to distribute this data with our release of GRASS software; and to the U.S. Census Bureau for their samples of TIGER/Line data and the STF1 data which were used in the development of the TIGER programs and tutorials. Thanks also to SPOT Image Corporation for providing multispectral and panchromatic satellite imagery for a portion of the spearfish data set and for allowing us to distribute this imagery with GRASS software. In addition to the data provided by the EDC and SPOT, researchers at USACERL have dev eloped several new layers, thus enhancing the spearfish data set. To use the spearfish data, when entering GRASS, enter spearfish as your choice for the current location.

    This is the classical GRASS GIS dataset from 1993 covering a part of Spearfish, South Dakota, USA, with raster, vector and point data. The Spearfish data base covers two 7.5 minute topographic sheets in the northern Black Hills of South Dakota, USA. It is in the Universal Transverse Mercator Projection. It was originally created by Larry Batten while he was with the U. S. Geological Survey's EROS Data Center in South Dakota. The data base was enhanced by USA/CERL and cooperators.

     
  16. d

    Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping...

    • datarade.ai
    .json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum, Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping Metadata & 5000 Categories [Dataset]. https://datarade.ai/data-products/xverum-geospatial-data-100-verified-locations-230m-poi-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    Xverum
    Area covered
    United States
    Description

    Xverum’s Global GIS & Geospatial Data is a high-precision dataset featuring 230M+ verified points of interest across 249 countries. With rich metadata, structured geographic attributes, and continuous updates, our dataset empowers businesses, researchers, and governments to extract location intelligence and conduct advanced geospatial analysis.

    Perfectly suited for GIS systems, mapping tools, and location intelligence platforms, this dataset covers everything from businesses and landmarks to public infrastructure, all classified into over 5000 categories. Whether you're planning urban developments, analyzing territories, or building location-based products, our data delivers unmatched coverage and accuracy.

    Key Features: ✅ 230M+ Global POIs Includes commercial, governmental, industrial, and service locations - updated regularly for accurate relevance.

    ✅ Comprehensive Geographic Coverage Worldwide dataset covering 249 countries, with attributes including latitude, longitude, city, country code, postal code, etc.

    ✅ Detailed Mapping Metadata Get structured address data, place names, categories, and location, which are ideal for map visualization and geospatial modeling.

    ✅ Bulk Delivery for GIS Platforms Available in .json - delivered via S3 Bucket or cloud storage for easy integration into ArcGIS, QGIS, Mapbox, and similar systems.

    ✅ Continuous Discovery & Refresh New POIs added and existing ones refreshed on a regular refresh cycle, ensuring reliable, up-to-date insights.

    ✅ Compliance & Scalability 100% compliant with global data regulations and scalable for enterprise use across mapping, urban planning, and retail analytics.

    Use Cases: 📍 Location Intelligence & Market Analysis Identify high-density commercial zones, assess regional activity, and understand spatial relationships between locations.

    🏙️ Urban Planning & Smart City Development Design infrastructure, zoning plans, and accessibility strategies using accurate location-based data.

    🗺️ Mapping & Navigation Enrich digital maps with verified business listings, categories, and address-level geographic attributes.

    📊 Retail Site Selection & Expansion Analyze proximity to key POIs for smarter retail or franchise placement.

    📌 Risk & Catchment Area Assessment Evaluate location clusters for insurance, logistics, or regional outreach strategies.

    Why Xverum? ✅ Global Coverage: One of the largest POI geospatial databases on the market ✅ Location Intelligence Ready: Built for GIS platforms and spatial analysis use ✅ Continuously Updated: New POIs discovered and refreshed regularly ✅ Enterprise-Friendly: Scalable, compliant, and customizable ✅ Flexible Delivery: Structured format for smooth data onboarding

    Request a free sample and discover how Xverum’s geospatial data can power your mapping, planning, and spatial analysis projects.

  17. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  18. Geographic Information System Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-market-global-industry-analysis
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System Market Outlook



    As per our latest research, the global Geographic Information System (GIS) market size reached USD 12.3 billion in 2024. The industry is experiencing robust expansion, driven by a surging demand for spatial data analytics across diverse sectors. The market is projected to grow at a CAGR of 11.2% from 2025 to 2033, reaching an estimated USD 31.9 billion by 2033. This accelerated growth is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing with GIS solutions, as well as the increasing adoption of location-based services and smart city initiatives worldwide.




    One of the primary growth factors fueling the GIS market is the rapid adoption of geospatial analytics in urban planning and infrastructure development. Governments and private enterprises are leveraging GIS to optimize land use, manage resources efficiently, and enhance public services. Urban planners utilize GIS to analyze demographic trends, plan transportation networks, and ensure sustainable development. The integration of GIS with Building Information Modeling (BIM) and real-time data feeds has further amplified its utility in smart city projects, driving demand for sophisticated GIS platforms. The proliferation of IoT devices and sensors has also enabled the collection of high-resolution geospatial data, which is instrumental in developing predictive models for urban growth and disaster management.




    Another significant driver of the GIS market is the increasing need for disaster management and risk mitigation. GIS technology plays a pivotal role in monitoring natural disasters such as floods, earthquakes, and wildfires. By providing real-time spatial data, GIS enables authorities to make informed decisions, coordinate response efforts, and allocate resources effectively. The growing frequency and intensity of natural disasters, coupled with heightened awareness about climate change, have compelled governments and humanitarian organizations to invest heavily in advanced GIS solutions. These investments are not only aimed at disaster response but also at long-term resilience planning, thereby expanding the scope and scale of GIS applications.




    The expanding application of GIS in the agriculture and utilities sectors is another crucial growth factor. Precision agriculture relies on GIS to analyze soil conditions, monitor crop health, and optimize irrigation practices, ultimately boosting productivity and sustainability. In the utilities sector, GIS is indispensable for asset management, network optimization, and outage response. The integration of GIS with remote sensing technologies and drones has revolutionized data collection and analysis, enabling more accurate and timely decision-making. Moreover, the emergence of cloud-based GIS platforms has democratized access to geospatial data and analytics, empowering small and medium enterprises to harness the power of GIS for operational efficiency and strategic planning.




    From a regional perspective, North America continues to dominate the GIS market, supported by substantial investments in smart infrastructure, advanced research capabilities, and a strong presence of leading technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid urbanization, government initiatives for digital transformation, and increasing adoption of GIS in agriculture and disaster management. Europe is also witnessing significant growth, particularly in transportation, environmental monitoring, and public safety applications. The Middle East & Africa and Latin America are gradually catching up, with growing investments in infrastructure development and resource management. This regional diversification is expected to drive innovation and competition in the global GIS market over the forecast period.





    Component Analysis



    The Geographic Information System market is segmented by component into hardware, software, and services, each playing a unique role

  19. d

    PostGIS integration in CyberGIS-Jupyter for Water (CJW) platform

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Weiye Chen; Shaohua Wang (2022). PostGIS integration in CyberGIS-Jupyter for Water (CJW) platform [Dataset]. https://search.dataone.org/view/sha256%3Acb0742b2847d905f742211f4f9e50f2232a0b8352b09b8e55c4778aafc6a44be
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Weiye Chen; Shaohua Wang
    Area covered
    Description

    This example demonstrates how to use PostGIS capabilities in CyberGIS-Jupyter notebook environment. Modified from notebook by Weiye Chen (weiyec2@illinois.edu)

    PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Systems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indices, and functions for analysis and processing of GIS objects.

    Resources for PostGIS:

    Manual https://postgis.net/docs/ In this demo, we use PostGIS 3.0. Note that significant changes in APIs have been made to PostGIS compared to version 2.x. This demo assumes that you have basic knowledge of SQL.

  20. Geographic Information System (GIS) Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System (GIS) Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-software-market-global-industry-analysis
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Software Market Outlook



    According to our latest research, the global Geographic Information System (GIS) Software market size reached USD 11.6 billion in 2024, reflecting a robust demand for spatial data analytics and location-based services across various industries. The market is experiencing a significant growth trajectory, driven by a CAGR of 12.4% from 2025 to 2033. By the end of 2033, the GIS Software market is forecasted to attain a value of USD 33.5 billion. This remarkable expansion is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing, which are enhancing the capabilities and accessibility of GIS platforms.




    One of the major growth factors propelling the GIS Software market is the increasing adoption of location-based services across urban planning, transportation, and utilities management. Governments and private organizations are leveraging GIS solutions to optimize infrastructure development, streamline resource allocation, and improve emergency response times. The proliferation of smart city initiatives worldwide has further fueled the demand for GIS tools, as urban planners and municipal authorities require accurate spatial data for effective decision-making. Additionally, the evolution of 3D GIS and real-time mapping technologies is enabling more sophisticated modeling and simulation, expanding the scope of GIS applications beyond traditional mapping to include predictive analytics and scenario planning.




    Another significant driver for the GIS Software market is the rapid digitization of industries such as agriculture, mining, and oil & gas. Precision agriculture, for example, relies heavily on GIS platforms to monitor crop health, manage irrigation, and enhance yield forecasting. Similarly, the mining sector uses GIS for exploration, environmental impact assessment, and asset management. The integration of remote sensing data with GIS software is providing stakeholders with actionable insights, leading to higher efficiency and reduced operational risks. Furthermore, the growing emphasis on environmental sustainability and regulatory compliance is prompting organizations to invest in advanced GIS solutions for monitoring land use, tracking deforestation, and managing natural resources.




    The expanding use of cloud-based GIS solutions is also a key factor driving market growth. Cloud deployment offers scalability, cost-effectiveness, and remote accessibility, making GIS tools more accessible to small and medium enterprises as well as large organizations. The cloud model supports real-time data sharing and collaboration, which is particularly valuable for disaster management and emergency response teams. As organizations increasingly prioritize digital transformation, the demand for cloud-native GIS platforms is expected to rise, supported by advancements in data security, interoperability, and integration with other enterprise systems.




    Regionally, North America remains the largest market for GIS Software, accounting for a significant share of global revenues. This leadership is underpinned by substantial investments in smart infrastructure, advanced transportation systems, and environmental monitoring programs. The Asia Pacific region, however, is witnessing the fastest growth, driven by rapid urbanization, government-led digital initiatives, and the expansion of the utility and agriculture sectors. Europe continues to demonstrate steady adoption, particularly in environmental management and urban planning, while Latin America and the Middle East & Africa are emerging as promising markets due to increasing investments in infrastructure and resource management.





    Component Analysis



    The GIS Software market is segmented by component into Software and Services, each playing a pivotal role in the overall value chain. The software segment includes comprehensive GIS platforms, spatial analytics tools, and specialized applications

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b

Geodatabase for the Baltimore Ecosystem Study Spatial Data

Explore at:
296 scholarly articles cite this dataset (View in Google Scholar)
application/vnd.rar(29574980 kilobyte)Available download formats
Dataset updated
May 4, 2012
Dataset provided by
EDI
Authors
Jarlath O'Neal-Dunne; Morgan Grove
Time period covered
Jan 1, 1999 - Jun 1, 2014
Area covered
Description

The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

   BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.


   Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.


   For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.


   Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 


   This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.


   See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt


   See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Search
Clear search
Close search
Google apps
Main menu