Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://hiu.state.gov/data/cartographic_guidance_bulletins/ Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: - International Boundaries (Rank 1); - Other Lines of International Separation (Rank 2); and - Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the feature—either line geometry or attribute—but it is still conceptually the same feature. The “PARENTID” field
World Countries Generalized represents generalized boundaries for the countries of the world as of August 2022. The generalized political boundaries improve draw performance and effectiveness at a global or continental level. This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri and sourced from Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.
The international boundary data featured in this shapefile consists of the boundary between the United States and Canada and the United States and Mexico. Each country's section is administered independently. The United States and Canada border data was provided by the International Boundary Commission, United States and Canada (IBC). The International Boundary and Water Commission (IBWC) provided the United States and Mexico section of the border data. Geospatial data files provided individually by the IBC and IBWC were used to re-align the Census Bureau's MAF/TIGER System data for the agency's representation of the international boundaries of United States with Canada and Mexico. The Census Bureau's MAF/TIGER System and the IBWC source file data for the portion of the United States and Mexico border featured a gap between Cameron County, Texas and the three-mile limit in the Gulf of Mexico. The National Oceanic and Atmospheric Administration Coast Survey Office's representation of the United States and Mexico boundary used to fill this gap.Download: https://www2.census.gov/geo/tiger/TIGER2023/INTERNATIONALBOUNDARY/tl_2023_us_internationalboundary.zipMetadata: https://meta.geo.census.gov/data/existing/decennial/GEO/GPMB/TIGERline/Current_19115/tl_2023_us_internationalboundary.shp.iso.xml
The Digital Geologic Map of International Boundary and Water Commission Mapping in Amistad National Recreation Area, Texas and Mexico is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Eddie Collins, Amanda Masterson and Tom Tremblay (Texas Bureau of Economic Geology); Rick Page (U.S. Geological Survey); Gilbert Anaya (International Boundary and Water Commission). Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (ibwc_metadata.txt; available at http://nrdata.nps.gov/amis/nrdata/geology/gis/ibwc_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (ibwc_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Amistad National Recreation Area.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer presents country boundaries; first-order (State/Province) internal administrative boundaries and names for most countries. The map was developed by Esri using administrative and city data from Esri; Garmin basemap layers for the world; HERE data for North America, Europe, Australia, New Zealand, South America and Central America, India, most of the Middle East and Asia, and Africa. Data for select areas of Africa and Pacific Island nations from ~1:288k to ~1:4k (~1:1k in select areas) was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.Select data for the World Boundaries and Places Map is provided by the GIS community. For details on the users who contributed data for this map via the Community Maps Program, view the list of Contributors for the World Boundaries and Places Map. This map is designed for use with maps with darker backgrounds, such as the World Imagery service. An alternate version of this service is also available, the World Boundaries and Places Alternate service, which is designed for overlaying on basemaps with lighter backgrounds, such as the World Shaded Relief service.
This map features boundaries and places for the World, including countries, 1st order administrative areas, and cities. The map layers are delivered as features, which you can click on for attribute information or re-symbolize as you choose.
The Global Administrative Unit Layers (GAUL) is an initiative implemented by FAO within the Bill & Melinda Gates Foundation, Agricultural Market Information System (AMIS) and AfricaFertilizer.org projects. The GAUL compiles and disseminates the best available information on administrative units for all the countries in the world, providing a contribution to the standardization of the spatial dataset representing administrative units. The GAUL always maintains global layers with a unified coding system at country, first (e.g. departments) and second administrative levels (e.g. districts). Where data is available, it provides layers on a country by country basis down to third, fourth and lowers levels. The overall methodology consists in a) collecting the best available data from most reliable sources, b) establishing validation periods of the geographic features (when possible), c) adding selected data to the global layer based on the last country boundaries map provided by the UN Cartographic Unit (UNCS), d) generating codes using GAUL Coding System and e) distribute data to the users (see TechnicalaspectsGAUL2015.pdf). Because GAUL works at global level, unsettled territories are reported. The approach of GAUL is to deal with these areas in such a way to preserve national integrity for all disputing countries (see TechnicalaspectsGAUL2015.pdf and G2015_DisputedAreas.dbf). GAUL is released once a year and the target beneficiary of GAUL data is the UN community and other authorized international and national partners. Data might not be officially validated by authoritative national sources and cannot be distributed to the general public. A disclaimer should always accompany any use of GAUL data. 5 territories have been updated respect to the previous release. Moreover, the coastline of American countries or other special areas have been updated using Open Street Map (see ReleaseNoteGAUL2015.pdf). GAUL keeps track of administrative units that has been changed, added or dismissed in the past for political causes. Changes implemented in different years are recorded in GAUL on different layers. For this reason the GAUL product is not a single layer but a group of layers, named "GAUL Set" (see ReleaseNoteGAUL2015.pdf). GAUL 2015 is the eighth release of the GAUL Set.
Geospatial data about World Bank Country Boundaries. Export to CAD, GIS, PDF, CSV and access via API.
The FGGD coastal and country boundaries of the world is a global datalayer that is available in both vector and raster formats, with a vector scale of 1:5 000 000 and a raster resolution of 5 arc-minutes. It contains coastal and country boundaries from Digital Soil Map of the World, updated to 2005 according to internationally-recognised changes reported by the UN Geographic Information Working Group (DPKO/UNCS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Administrative Boundaries used by the Data in Emergencies Hub are the result of a collection of international and subnational divisions currently used by FAO country offices for mapping and reporting purposes. With only a few exceptions, they are mostly derived from datasets published on The Humanitarian Data Exchange (OCHA).The dataset consists of national boundaries, first subdivision, and second subdivision for Sure! Here's the reformatted list as requested:
Afghanistan, Angola, Bangladesh, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Colombia, Comoros, Democratic Republic of the Congo, Ecuador, El Salvador, Federated States of Micronesia, Ghana, Guatemala, Haiti, Honduras, Iraq, Kingdom of Tonga, Kiribati, Kyrgyzstan, Lao People's Democratic Republic, Lebanon, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mozambique, Myanmar, Namibia, Nepal, Niger, Nigeria, Pakistan, Palestine, Philippines, Republic of the Marshall Islands, Saint Lucia, Samoa, Senegal, Sierra Leone, Solomon Islands, Somalia, South Sudan, Sri Lanka, Sudan, Suriname, Syrian Arab Republic, Tajikistan, Thailand, Timor-Leste, Togo, Tuvalu, Uganda, Ukraine, Venezuela, Vietnam, Yemen, and Zimbabwe.In the Feature Layer, the administrative boundaries are represented by closed polygons, administrative levels are nested and multiple distinct polygons are represented as a single record.The Data in Emergencies Hub team is responsible for keeping the layer up to date, so please report any possible errors or outdated information.The boundaries and names shown and the designations used on these map(s) do not imply the expression of any opinion whatsoever on the part of FAO concerning the legal status of any country, territory, city, or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. Dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The final boundary between the Sudan and South Sudan has not yet been determined. The final status of the Abyei area is not yet determined. The dotted line represents approximately the Line of Control in Jammu and Kashmir agreed upon by India and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties.
This geodatabase reflects the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Africa. The geodatabase and geospatial data layers serve to create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains data layers from USGS, foreign governmental, and open-source sources as follows: (1) mineral production and processing facilities, (2) mineral exploration and development sites, (3) mineral occurrence sites and deposits, (4) undiscovered mineral resource tracts for Gabon and Mauritania, (5) undiscovered mineral resource tracts for potash, platinum-group elements, and copper, (6) coal occurrence areas, (7) electric power generating facilities, (8) electric power transmission lines, (9) liquefied natural gas terminals, (10) oil and gas pipelines, (11) undiscovered, technically recoverable conventional and continuous hydrocarbon resources (by USGS geologic/petroleum province), (12) cumulative production, and recoverable conventional resources (by oil- and gas-producing nation), (13) major mineral exporting maritime ports, (14) railroads, (15) major roads, (16) major cities, (17) major lakes, (18) major river systems, (19) first-level administrative division (ADM1) boundaries for all countries in Africa, and (20) international boundaries for all countries in Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Large Scale International BoundariesThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the Department of State, displays Large Scale International Boundaries. Per the Department of State, "The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.3.1 (published 30 April 2024). The 11.3.1 release contains data refinements enabling reuse of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control."Guatemala - Mexico, Costa Rica - Panama and Honduras - Nicaragua boundariesData currency: April 30, 2024Data source: Large Scale International BoundariesNGDAID: 194 (Large Scale International Boundaries)OGC API Features Link: (Large Scale International Boundaries - OGC) copy this link to embed it in OGC Compliant viewersFor more information, please visit: Large Scale International BoundariesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA International Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), the theme "delineates the geographic extent of sovereignty of foreign areas as understood by the United States. These boundaries between sovereign states, political entities, and other special geographic areas have distinct foreign policy implications for the United States, as determined by the Department of State. The representation of these boundaries must, when possible, follow the legal instruments that created them and must mirror United States Government foreign policy relative to recognition, dispute, status, and depiction. International boundary data includes both textual information to describe, and GIS digital cartographic data to depict, foreign land and maritime international boundaries, other lines of separation, limits, zones, enclaves, exclaves and special areas between sovereign states and dependencies. The international boundaries between the United States and Mexico and the United States and Canada are excluded from this theme. Boundaries associated with internal administrative divisions of a foreign sovereign state do not fall within this theme."For other NGDA Content: Esri Federal Datasets
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Office of the Geographer’s Global Large Scale International Boundary Detailed Polygons file combines two datasets, the Office of the Geographer’s Large Scale International Boundary Lines and NGA shoreline data. The LSIB is believed to be the most accurate worldwide (non- W. Europe) international boundary vector line file available. The lines reflect U.S. government (USG) policy and thus not necessarily de facto control. The 1:250,000 scale World Vector Shoreline (WVS) coastline data was used in places and is generally shifted by several hundred meters to over a km. There are no restrictions on use of this public domain data. The Tesla Government PiX team performed topology checks and other GIS processing while merging data sets, created more accurate island shoreline in numerous cases, and worked closely with the US Dept. of State Office of the Geographer on quality control checks.
Methodology:
Tesla Government’s Protected Internet Exchange (PiX) GIS team converted the LSIB linework and the island data provided by the State Department to polygons. The LSIB Admin 0 world polygons (Admin 0 polygons) were created by conflating the following datasets: Eurasia_Oceania_LSIB7a_gen_polygons, Africa_Americas_LSIB7a_gen_polygons, Africa_Americas_LSIB7a, Eurasia_LSIB7a, additional updates from LSIB8, WVS shoreline data, and other shoreline data from United States Government (USG) sources.
The two simplified polygon shapefiles were merged, dissolved, and converted to lines to create a single global coastline dataset. The two detailed line shapefiles (Eurasia_LSIB7a and Africa_Americas_LSIB7a) were merged with each other and the coastlines to create an international boundary shapefile with coastlines. The dataset was reviewed for the following topological errors: must not self overlap, must not overlap, and must not have dangles. Once all topological errors were fixed, the lines were converted to polygons. Attribution was assigned by exploding the simplified polygons into multipart features, converting to centroids, and spatially joining with the newly created dataset. The polygons were then dissolved by country name.
Another round of QC was performed on the dataset through the data reviewer tool to ensure that the conversion worked correctly. Additional errors identified during this process consisted of islands shifted from their true locations and not representing their true shape; these were adjusted using high resolution imagery whereupon a second round of QC was applied with SRTM digital elevation model data downloaded from USGS. The same procedure was performed for every individual island contained in the islands from other USG sources.
After the island dataset went through another round of QC, it was then merged with the Admin 0 polygon shapefile to form a comprehensive world dataset. The entire dataset was then evaluated, including for proper attribution for all of the islands, by the Office of the Geographer.
This National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A joint venture is a self-directed partnership of agencies, organizations, corporations, tribes, or individuals that has formally accepted the responsibility of implementing national or international bird conservation plans within a specific geographic area or for a specific taxonomic group, and has received general acceptance in the bird conservation community for such responsibility. Federal, state, tribal, or private parties may suggest the development of new joint ventures at any time. The initiating agency or organization will coordinate with potential partners to produce a scoping document or concept plan. circulate the document for review and comment by agencies, organizations, and individuals. Based on this review, a decision as to whether or not to form a management board and develop an implementation plan will be made. submit a draft implementation plan to the Division of Bird Habitat Conservation (Division), which will coordinate the review of the plan within the Service, with the appropriate Flyway Councils (Atlantic, Mississippi, Central, and Pacific), with the national or international boards that oversee the various bird conservation initiatives (North American Waterfowl Management Plan, U.S. Shorebird Conservation Plan, North American Waterbird Conservation Plan, and Partners in Flight), and other interested parties. Based on this review, the Division will determine whether or not a recommendation for Service support of the proposed joint venture should be made to the Director. This revision shows recent (12.15.21) Central Hardwood JV and Upper Mississippi/Great Lakes JV boundary changes.USFWS Migratory Bird Program: https://www.fws.gov/birds/index.phpFor a direct link to the official Enterprise Geospatial dataset and metadata: https://ecos.fws.gov/ServCat/Reference/Profile/143047
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TransportationThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau, displays primary roads, secondary roads, local roads and railroads in the United States. According to the USCB, "This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways."Interstates 20 and 635Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (TIGERweb/Transportation) and will support mapping, analysis, data exports and OGC API – Feature access.Data.gov: Series Information for All Roads County-based TIGER/Line Shapefiles, CurrentGeoplatform: Series Information for All Roads County-based TIGER/Line Shapefiles, CurrentOGC API Features Link: (Transportation - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: Census Feature Class Codes (CFCC)For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
World sub-national boundaries with population counts for GIS mapping software are from Caliper Corporation.
This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed under the project "Renewable Energy Mapping: Small Hydro Tanzania". This study is part of a technical assistance project, ESMAP funded, being implemented by Africa Energy Practice of the World Bank in Tanzania which aims at supporting resource mapping and geospatial planning for small hydro. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_TNZ The GIS database contains the following datasets: Administrative Boundaries Hydrology Protected Areas Satellite Imagery Land Cover Geology Topography Population Infrastructure: Power/ Transport each accompanied by a metadata file Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Tanzania Small Hydro GIS Atlas, 2018, https://energydata.info/dataset/tanzania-small-hydro-gis-database-2018"
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
World population point data for use with GIS mapping software, databases, and web applications are from Caliper Corporation.
Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://hiu.state.gov/data/cartographic_guidance_bulletins/ Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: - International Boundaries (Rank 1); - Other Lines of International Separation (Rank 2); and - Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the feature—either line geometry or attribute—but it is still conceptually the same feature. The “PARENTID” field