This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
This geodatabase reflects the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Africa. The geodatabase and geospatial data layers serve to create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains data layers from USGS, foreign governmental, and open-source sources as follows: (1) mineral production and processing facilities, (2) mineral exploration and development sites, (3) mineral occurrence sites and deposits, (4) undiscovered mineral resource tracts for Gabon and Mauritania, (5) undiscovered mineral resource tracts for potash, platinum-group elements, and copper, (6) coal occurrence areas, (7) electric power generating facilities, (8) electric power transmission lines, (9) liquefied natural gas terminals, (10) oil and gas pipelines, (11) undiscovered, technically recoverable conventional and continuous hydrocarbon resources (by USGS geologic/petroleum province), (12) cumulative production, and recoverable conventional resources (by oil- and gas-producing nation), (13) major mineral exporting maritime ports, (14) railroads, (15) major roads, (16) major cities, (17) major lakes, (18) major river systems, (19) first-level administrative division (ADM1) boundaries for all countries in Africa, and (20) international boundaries for all countries in Africa.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values a ...
Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication can be downloaded on an FCC page. Additionally, data files can be individually downloaded from the FCC Universal Licensing System data site. This data resource is intended to guide users toward the authoritative data source and to demonstrate at least one translation of that data into a spatial format.
The metadata for this translated dataset is here:
Antenna Structure Registration: antenna_structure_registration_mn.html
In addition, the Department of Homeland Security's Homeland Infrastructure Foundation - Level Data (HIFLD) program has an "Open Data" site, which includes a nationwide dataset on Cellular Towers derived from the FCC Universal Licensing System Database: https://hifld-geoplatform.opendata.arcgis.com/datasets/cellular-towers
description: Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication, extracted from the FCC Licensing Database, can be individually downloaded from the FCC GIS data site. Addiitonally, a full dataset download of all GIS files is packaged with an ArcExplorer(R) viewing capability for users who do not have full GIS capability.; abstract: Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication, extracted from the FCC Licensing Database, can be individually downloaded from the FCC GIS data site. Addiitonally, a full dataset download of all GIS files is packaged with an ArcExplorer(R) viewing capability for users who do not have full GIS capability.
This map layer depicts the Sierra Nevada Conservancy's, Watershed Improvement Program Administrative Boundaries, which are known as Watershed Assessment Areas (AA) including the Tahoe Basin, which is not located within the SNC's boundary.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Planning, Engineering & Permitting - GIS Mapping files
World Continents represents the boundaries for the continents of the world. It provides a basemap layer of the continents, delivering a straightforward method of selecting a small multicountry area for display or study.This layer is best viewed out beyond a scale of 1:3,000,000. The original source was extracted from the ArcWorld Supplement database in 2001 and updated as country boundaries coincident to regional boundaries change. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Continents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
Collection of various datasets in esri shapefile format for download; includes hydrography and geology data.
This dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.
It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.
If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.
County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.
This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.
There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.
The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.
DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS Transportation downloadable data from The National Map (TNM) is based on TIGER/Line data provided through U.S. Census Bureau and supplemented with HERE road data to create tile cache base maps. Some of the TIGER/Line data includes limited corrections done by USGS. Transportation data consists of roads, railroads, trails, airports, and other features associated with the transport of people or commerce. The data include the name or route designator, classification, and location. Transportation data support general mapping and geographic information system technology analysis for applications such as traffic safety, congestion mitigation, disaster planning, and emergency response. The National Map transportation data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and structure ...
A vector GIS dataset of candidate areas for terrestrial ecological restoration based on landscape context. The dataset was created using NLCD 2011 (www.mrlc.gov) and morphological spatial pattern analysis (MSPA) (http://forest.jrc.ec.europa.eu/download/software/guidos/mspa/). There are 13 attributes for the polygons in the dataset, including presence and length of roads, candidate area size, size of surround contiguous natural areas, soil productivity, presence and length of road, areas suitable for wetland restoration, and others. This dataset is associated with the following publication: Wickham, J., K. Riiters, P. Vogt, J. Costanza, and A. Neale. An inventory of continental U.S. terrestrial candidate ecological restoration areas based on landscape context. RESTORATION ECOLOGY. Blackwell Publishing, Malden, MA, USA, 25(6): 894-902, (2017).
Publicly accessible data services, apps, maps, downloads and KMLs for all of the Alaska Department of Natural Resources datasets. This is the community's public platform for exploring and downloading open data, discovering and building apps, and engaging to solve important local issues. Analyze and combine Open Datasets using maps, as well as develop new web and mobile applications. Let's make our great community even better, together!DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the Open Data application. To make changes to this site, please visit https://opendata.arcgis.com/admin/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains solar resource data for: direct normal irradiation (DNI), global horizontal irradiation (GHI), diffuse horizontal irradiation data (DIF), and global irradiation for optimally tilted surfaces (GTI), all in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m). Due to the large amount of data, the coverage has been divided into eight segments. Four segments for the North hemisphere: WWN (West-west-north), WN (West-north), EN (East-north), EEN (East-east-north). Analogically four segments for the South hemisphere: WWS, WS, ES, EES. The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: raster (gridded), GEOTIFF File size : 343.99 MB For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
King County GIS data is at: https://gis-kingcounty.opendata.arcgis.com/ (new KCGIS Open Data site) OR http://www5.kingcounty.gov/gisdataportal/ (legacy KCGIS data FTP download portal)
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The City of Seattle Transportation GIS Datasets | https://data-seattlecitygis.opendata.arcgis.com/datasets?t=transportation | Lifecycle status: Production | Purpose: to enable open access to SDOT GIS data. This website includes over 60 transportation-related GIS datasets from categories such as parking, transit, pedestrian, bicycle, and roadway assets. | PDDL: https://opendatacommons.org/licenses/pddl/
| The City of Seattle makes no representation or warranty as to its accuracy. The City of Seattle has created this service for our GIS Open Data website. We do reserve the right to alter, suspend, re-host, or retire this service at any time and without notice.
| Datasets: 2007 Traffic Flow Counts, 2008 Traffic Flow Counts, 2009 Traffic Flow Counts, 2010 Traffic Flow Counts, 2011 Traffic Flow Counts, 2012 Traffic Flow Counts, 2013 Traffic Flow Counts, 2014 Traffic Flow Counts, 2015 Traffic Flow Counts, 2016 Traffic Flow Counts, 2017 Traffic Flow Counts, 2018 Traffic Flow Counts, Areaways, Bike Racks, Blockface, Bridges, Channelization File Geodatabase, Collisions, Crash Cushions, Curb Ramps, dotMaps Active Projects, Dynamic Message Signs, Existing Bike Facilities, Freight Network, Greater Downtown Alleys, Guardrails, High Impact Areas, Intersections, Marked Crosswalks, One-Way Streets, Paid Area Curbspaces, Pavement Moratoriums, Pay Stations, Peak Hour Parking Restrictions, Planned Bike Facilities, Public Garages or Parking Lots, Radar Speed Signs, Restricted Parking Zone (RPZ) Program, Retaining Walls, SDOT Capital Projects Input, Seattle On Street Paid Parking-Daytime Rates, Seattle On Street Paid Parking-Evening Rates, Seattle On Street Paid Parking-Morning Rates, Seattle Streets, SidewalkObservations, Sidewalks, Snow Ice Routes, Stairways, Street Design Concept Plans, Street Ends (Shoreline), Street Furnishings, Street Signs, Street Use Permits Use Addresses, Streetcar Lines, Streetcar Stations, Traffic Beacons, Traffic Cameras, Traffic Circles, Traffic Detectors, Traffic Lanes, Traffic Signals, Transit Classification, Trees.
This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.