Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.
The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:
(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.
(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.
(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.
Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.
More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.
Data processing
We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.
Version
Version 2022.1.
Acknowledgements
This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.
Citation
Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision
Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940
Contacts
Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;
Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn
Institution: Kunming Institute of Botany, Chinese Academy of Sciences
Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China
Copyright
This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
This shapefile contains the Defined Area Boundaries for Williamson County, Texas. This shapefile is created and maintained by the Williamson Central Appraisal District Mapping Department. The data in this layer are represented as polygons.
description: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.; abstract: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.
Parcel boundaries exported nightly from the Assessor's Office managed parcel fabric and joined with attributes related to owner information, values and size, the water source (Public Health database) and a link to the SmartGov public portal (permitting database). Most features are within 3 feet however some features can be up to 20 feet off. Please read the full data disclaimer when using this dataset.
These data show sample locations for various abiotic data collected on Konza Prairie (rain gauges, soil moisture, and stream data). Included in these data are the locations for 12 rain gauges (GIS300) on Konza Prairie. The Konza headquarters weather station formerly consisted of two gauges which were operated year-round. The Konza headquarters weather station currently consists of one Otto-Pluvio2 gauge which is operated year-round. The remaining Konza-operated gauges run from April 1 to November 1. These data are to be used in conjunction with the APT01 (precipitation) dataset. GIS305 defines the locations where measurements of soil moisture (%volume) are taken on Konza Prairie. These data are to be used in conjunction with the ASM01 (soil moisture) dataset. GIS309 defines the locations within watershed N4D of soil sampler nests. In Jan 2020, we separated the original GIS310 file 'Wells in N4D' into GIS310 'Wells in N4D' and GIS309 'Soil Sampler Nests'. Prior to then, soil sampler nests and wells were combined in GIS310. GIS310 defines the locations within watershed N4D where samples are taken for analyzing the belowground water chemistry of the watershed. These data are to be used in conjunction with the AGW01 dataset. GIS311 defines the locations of 14 wells at two sites along Kings Creek. Depth and nutrient content of groundwater is measured at these sites. These data are to be used in conjunction with the AGW02 dataset. GIS315 defines the locations of stream sampling stations within multiple Konza watersheds. These data are to be used in conjunction with the NWC, ASS, ASD, and ASW datasets. GIS320 defines the locations of the rainfall collectors used to collect the samples analyzed as a part of the National Atmospheric Deposition Program. These data are to be used in conjunction with the ANA01 dataset. These data are available to download as zipped shapefiles (.zip), compressed Google Earth KML layers (.kmz).
This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.
Identify and explain how freedom is defined around the world.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The U.S. Geological Survey (USGS), in cooperation with the Illinois Center for Transportation and the Illinois Department of Transportation, prepared hydro-conditioned geographic information systems (GIS) layers for use in the Illinois StreamStats application. These data were used to delineate drainage basins and compute basin characteristics for updated peak flow and flow duration regression equations for Illinois. This dataset consists of raster grid files for elevation (dem), flow accumulation (fac), flow direction (fdr), and stream definition (str900) for each 8-digit Hydrologic Unit Code (HUC) area in Illinois merged into a single dataset. There are 51 full or partial HUC 8s represented by this data set: 04040002, 05120108, 05120109, 05120111, 05120112, 05120113, 05120114, 05120115, 05140202, 05140203, 05140204, 05140206, 07060005, 07080101, 07080104, 07090001, 07090002, 07090003, 07090004, 07090005, 07090006, 07090007, 07110001, 07110004, 07110009, 07120001, 07120002, 071200 ...
[Metadata] Traffic Analysis Zones for the Island of Oahu, 2022. Source: Oahu Metropolitan Planning Organization (OMPO), Feb. 2024. A traffic analysis zone (TAZ) is a geographic unit used in transportation planning models. TAZs are used to represent the spatial distribution of trip origins and destinations. TAZ boundaries are defined based on Census geographies (block, block group and tract). Care has been taken so that TAZs nest within Census tracts wherever possible in order for more direct matching with Census data. TAZ boundaries are also defined by major transportation facilities (such as roadways), major environmental features (such as rivers), and with underlying land uses. The relative size of the TAZ was also a factor in determining new TAZ boundaries if the zone size was large and the zone was thought to have a significant amount of socioeconomic activity. Generally, TAZs in urban areas are smaller than those in suburban and rural areas. Note: Data is updated every 5 years or as needed.Data created by Oahu Metropolitan Planning Organization (OMPO) and vetted by the City and County of Honolulu, particularly the Department of Planning and Permitting (DPP) and the Department of Transportation Services (DTS).For more information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/taz_oah.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Benches on the Old Dominion University Campus
Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (<1.5Ma) basaltic vents also correlate with geothermal systems, possibly because the vents help identify which young structures penetrate deeply into the crust. As expected, elevated concentrations of boron and lithium in groundwater were found to be favorable indicators of geothermal activity. Known high-temperature (>160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Arithmetic map operations are very common procedures used in GIS to combine raster maps resulting in a new and improved raster map. It is essential that this new map be accompanied by an assessment of uncertainty. This paper shows how we can calculate the uncertainty of the resulting map after performing some arithmetic operation. Actually, the propagation of uncertainty depends on a reliable measurement of the local accuracy and local covariance, as well. In this sense, the use of the interpolation variance is proposed because it takes into account both data configuration and data values. Taylor series expansion is used to derive the mean and variance of the function defined by an arithmetic operation. We show exact results for means and variances for arithmetic operations involving addition, subtraction and multiplication and that it is possible to get approximate mean and variance for the quotient of raster maps.
These data show the sampling locations for the consumer datasets at Konza Prairie. GIS400 defines the starting points for sweep samples of grasshoppers across Konza Prairie. These data may be used in conjunction with the sweep sample datasets (CGR02). GIS401 defines the starting points for sweep samples of grasshoppers across Konza Prairie, focusing on grazing impact. These data may be used in conjunction with the sweep sample datasets (CGR02Z). GIS405 defines the trap locations for small mammal sampling across Konza Prairie. These data may be used in conjunction with CSM0X. GIS 406 defines the locations of small mammal host parasite sampling at Konza Prairie. These data may be used in conjunction with CSM08. GIS410 defines the stream stretches for fish sampling across Konza Prairie. These data may be used in conjunction with CFC01. These data are available to download as zipped shapefiles (.zip), compressed Google Earth KML layers (.kmz), and associated EML metadata (.xml).
This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
© MarineCadastre.gov This layer is a component of BOEMRE Layers.
This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.
For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov
The REST services for National Level Data can be found here:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer
REST services for regional level data can be found by clicking on the region of interest from the following URL:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE
Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL:
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx
Currently the following layers are available from this REST location:
OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.
OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.
OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.
BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.
BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.
Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.
Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip
BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest.
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.
BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf
This dataset contains the boundary polygon of the Konza Prairie Biological Station (KPBS). Data type one (GIS000) defines the original KPBS boundary used from 1977 until 1982, and type two contains the extended boundary used since 1982 (GIS001). These data are available to download as zipped shapefiles (.zip), compressed Google Earth KML layers (.kmz), and associated EML metadata (.xml).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The GIS-based Time model of Gothenburg aims to map the process of urban development in Gothenburg since 1960 and in particular to document the changes in the spatial form of the city - streets, buildings and plots - through time. Major steps have in recent decades been taken when it comes to understanding how cities work. Essential is the change from understanding cities as locations to understanding them as flows (Batty 2013)1. In principle this means that we need to understand locations (or places) as defined by flows (or different forms of traffic), rather than locations only served by flows. This implies that we need to understand the built form and spatial structure of cities as a system, that by shaping flows creates a series of places with very specific relations to all other places in the city, which also give them very specific performative potentials. It also implies the rather fascinating notion that what happens in one place is dependent on its relation to all other places (Hillier 1996)2. Hence, to understand the individual place, we need a model of the city as a whole.
Extensive research in this direction has taken place in recent years, that has also spilled over to urban design practice, not least in Sweden, where the idea that to understand the part you need to understand the whole is starting to be established. With the GIS-based Time model for Gothenburg that we present here, we address the next challenge. Place is not only something defined by its spatial relation to all other places in its system, but also by its history, or its evolution over time. Since the built form of the city changes over time, often by cities growing but at times also by cities shrinking, the spatial relation between places changes over time. If cities tend to grow, and most often by extending their periphery, it means that most places get a more central location over time. If this is a general tendency, it does not mean that all places increase their centrality to an equal degree. Depending on the structure of the individual city’s spatial form, different places become more centrally located to different degrees as well as their relative distance to other places changes to different degrees. The even more fascinating notion then becomes apparent; places move over time! To capture, study and understand this, we need a "time model".
The GIS-based time model of Gothenburg consists of: • 12 GIS-layers of the street network, from 1960 to 2015, in 5-year intervals • 12 GIS-layers of the buildings from 1960 to 2015, in 5-year intervals - Please note that this dataset has been moved to a separate catalog post (https://doi.org/10.5878/t8s9-6y15) and unpublished due to licensing restrictions on its source dataset. • 12 GIS- layers of the plots from1960 to 2015, in 5-year intervals
In the GIS-based Time model, for every time-frame, the combination of the three fundamental components of spatial form, that is streets, plots and buildings, provides a consistent description of the built environment at that particular time. The evolution of three components can be studied individually, where one could for example analyze the changing patterns of street centrality over time by focusing on the street network; or, the densification processes by focusing on the buildings; or, the expansion of the city by way of occupying more buildable land, by focusing on plots. The combined snapshots of street centrality, density and land division can provide insightful observations about the spatial form of the city at each time-frame; for example, the patterns of spatial segregation, the distribution of urban density or the patterns of sprawl. The observation of how the interrelated layers of spatial form together evolved and transformed through time can provide a more complete image of the patterns of urban growth in the city.
The Time model was created following the principles of the model of spatial form of the city, as developed by the Spatial Morphology Group (SMoG) at Chalmers University of Technology, within the three-year research project ‘International Spatial Morphology Lab (SMoL)’.
The project is funded by Älvstranden Utveckling AB in the framework of a larger cooperation project called Fusion Point Gothenburg. The data is shared via SND to create a research infrastructure that is open to new study initiatives.
12 GIS-layers of plots in Gothenburg, from 1960 to 2015, in 5-year intervals. Only built upon plots (plots with buildings) are included. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.
See the attached Technical Documentation for the description and further details on the production of the datasets. See the attached Report for the description of the related research project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology.
The collection is a descriptive list, holding the following information for each dataset:
NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.
Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.