100+ datasets found
  1. d

    Data from: Three GIS datasets defining areas permissive for the occurrence...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Three GIS datasets defining areas permissive for the occurrence of uranium-bearing, solution-collapse breccia pipes in northern Arizona and southeast Utah [Dataset]. https://catalog.data.gov/dataset/three-gis-datasets-defining-areas-permissive-for-the-occurrence-of-uranium-bearing-solutio
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Utah
    Description

    Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.

  2. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie; Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Kunming Institute of Botany, Chinese Academy of Sciences
    Authors
    Liu, Jie; Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  3. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Coal Oil Point, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  4. S

    Defined Areas

    • splitgraph.com
    • data.wcad.org
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wcad (2024). Defined Areas [Dataset]. https://www.splitgraph.com/wcad/defined-areas-7ezg-6767
    Explore at:
    application/vnd.splitgraph.image, application/openapi+json, jsonAvailable download formats
    Dataset updated
    Oct 1, 2024
    Authors
    wcad
    Description

    This shapefile contains the Defined Area Boundaries for Williamson County, Texas. This shapefile is created and maintained by the Williamson Central Appraisal District Mapping Department. The data in this layer are represented as polygons.

    Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:

    See the Splitgraph documentation for more information.

  5. d

    Data and Results for GIS-Based Identification of Areas that have Resource...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo
    Explore at:
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

  6. Medical Service Study Area Data Dictionary

    • gis.data.chhs.ca.gov
    • data.ca.gov
    • +4more
    Updated Sep 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Department of Health Care Access and Information (2024). Medical Service Study Area Data Dictionary [Dataset]. https://gis.data.chhs.ca.gov/datasets/hcai::medical-service-study-area-data-dictionary
    Explore at:
    Dataset updated
    Sep 6, 2024
    Dataset provided by
    Department of Health Care Access and Information
    Authors
    CA Department of Health Care Access and Information
    Description

    Field Name Data Type Description

    Statefp Number US Census Bureau unique identifier of the state

    Countyfp Number US Census Bureau unique identifier of the county

    Countynm Text County name

    Tractce Number US Census Bureau unique identifier of the census tract

    Geoid Number US Census Bureau unique identifier of the state + county + census tract

    Aland Number US Census Bureau defined land area of the census tract

    Awater Number US Census Bureau defined water area of the census tract

    Asqmi Number Area calculated in square miles from the Aland

    MSSAid Text ID of the Medical Service Study Area (MSSA) the census tract belongs to

    MSSAnm Text Name of the Medical Service Study Area (MSSA) the census tract belongs to

    Definition Text Type of MSSA, possible values are urban, rural and frontier.

    TotalPovPop Number US Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701

  7. r

    Public Open Space (POS) geographic information system (GIS) layer

    • researchdata.edu.au
    Updated Aug 8, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Associate Paula Hooper (2012). Public Open Space (POS) geographic information system (GIS) layer [Dataset]. https://researchdata.edu.au/public-open-space-pos-geographic-information-system-gis-layer
    Explore at:
    Dataset updated
    Aug 8, 2012
    Dataset provided by
    The University of Western Australia
    Authors
    Research Associate Paula Hooper
    Time period covered
    Dec 1, 2011 - Present
    Area covered
    Description

    Public Open Space Geographic Information System data collection for Perth and Peel Metropolitan Areas

    The public open space (POS) dataset contains polygon boundaries of areas defined as publicly available and open. This geographic information system (GIS) dataset was collected in 2011/2012 using ArcGIS software and aerial photography dated from 2010-2011. The data was collected across the Perth Metro and Peel Region.

    POS refer to all land reserved for the provision of green space and natural environments (e.g. parks, reserves, bushland) that is freely accessible and intended for use for recreation purposes (active or passive) by the general public. Four types of “green and natural public open spaces” are distinguished: (1) Park; (2) Natural or Conservation Area; (3) School Grounds; and (4) Residual. Areas where the public are not permitted except on payment or which are available to limited and selected numbers by membership (e.g. golf courses and sports centre facilities) or setbacks and buffers required by legislation are not included.

    Initially, potential POSs were identified from a combination of existing geographic information system (GIS) spatial data layers to create a generalized representation of ‘green space’ throughout the Perth metropolitan and Peel regions. Base data layers include: cadastral polygons, metropolitan and regional planning scheme polygons, school point locations, and reserve vesting polygons. The ‘green’ space layer was then visually updated and edited to represent the true boundaries of each POS using 2010-2011 aerial photography within the ArcGIS software environment. Each resulting ’green’ polygon was then classified using a decision tree into one of four possible categories: park, natural or conservation area, school grounds, or residual green space.

    Following the classification process, amenity and other information about each POS was collected for polygons classified as “Park” following a protocol developed at the Centre for the Built Environment and Health (CBEH) called POSDAT (Public Open Space Desktop Auditing Tool). The parks were audited using aerial photography visualized using ArcGIS software. . The presence or absence of amenities such as sporting facilities (e.g. tennis courts, soccer fields, skate parks etc) were audited as well as information on the environmental quality (i.e. presence of water, adjacency to bushland, shade along paths, etc), recreational amenities (e.g. presence of BBQ’, café or kiosks, public access toilets) and information on selected features related to personal safety.

    The data is stored in an ArcGIS File Geodatabase Feature Class (size 4MB) and has restricted access.

    Data creation methodology, data definitions, and links to publications based on this data, accompany the dataset.

  8. d

    Data from: Points for Maps: ArcGIS layer providing the site locations and...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Points for Maps: ArcGIS layer providing the site locations and the water-level statistics used for creating the water-level contour maps [Dataset]. https://catalog.data.gov/dataset/points-for-maps-arcgis-layer-providing-the-site-locations-and-the-water-level-statistics-u
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  9. U

    Elevation, Flow Accumulation, Flow Direction, and Stream Definition Data in...

    • data.usgs.gov
    • datasets.ai
    • +2more
    Updated Dec 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lindsey Schafer; Jennifer Sharpe (2023). Elevation, Flow Accumulation, Flow Direction, and Stream Definition Data in Support of the Illinois StreamStats Upgrade to the Basin Delineation Database [Dataset]. http://doi.org/10.5066/P9YIAUZQ
    Explore at:
    Dataset updated
    Dec 8, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Lindsey Schafer; Jennifer Sharpe
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2023
    Area covered
    Illinois
    Description

    The U.S. Geological Survey (USGS), in cooperation with the Illinois Center for Transportation and the Illinois Department of Transportation, prepared hydro-conditioned geographic information systems (GIS) layers for use in the Illinois StreamStats application. These data were used to delineate drainage basins and compute basin characteristics for updated peak flow and flow duration regression equations for Illinois. This dataset consists of raster grid files for elevation (dem), flow accumulation (fac), flow direction (fdr), and stream definition (str900) for each 8-digit Hydrologic Unit Code (HUC) area in Illinois merged into a single dataset. There are 51 full or partial HUC 8s represented by this data set: 04040002, 05120108, 05120109, 05120111, 05120112, 05120113, 05120114, 05120115, 05140202, 05140203, 05140204, 05140206, 07060005, 07080101, 07080104, 07090001, 07090002, 07090003, 07090004, 07090005, 07090006, 07090007, 07110001, 07110004, 07110009, 07120001, 07120002, 071200 ...

  10. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  11. c

    Geographic Lead Agencies

    • gis.data.ca.gov
    • data.ca.gov
    • +2more
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Education (2020). Geographic Lead Agencies [Dataset]. https://gis.data.ca.gov/datasets/CDEGIS::geographic-lead-agencies
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    California Department of Education
    Area covered
    Description

    Legislative AuthorizationAssembly Bill 1808 appropriated $4 million to establish the California Geographic Lead Agencies (Lead Agency) to build the capacity of county offices of education (COEs) to ensure that counties are equipped to build the capacity of their local educational agencies (LEAs) to support the continuous improvement of student performance within the state priorities as defined in California Education Code (EC) sections 52060 and 52066 and address the gaps in achievement between student groups as defined in EC Section 52052.PurposeThe 6 to 10 Lead Agencies will work together to support the following goals for all counties. The Lead Agencies will also connect COEs to the other initiatives within California's System of Support.Support the continuous improvement of student performance within the state priorities across student groups as defined in EC sections 52060 and 52066.Address the gaps in achievement between student groups as defined in EC Section 52052.Improve outreach and collaboration with stakeholders to ensure that goals, actions, and services as described in school district and COEs Local Control and Accountability Plans reflect the needs of the community, especially for historically under-represented or low-achieving populations.Serve as a facilitator, resource connector, and capacity builder for COEs.Funding DescriptionEach Lead Agency is selected for a term ending no later than June 30, 2023. Each awardee will receive a minimum of $250,000 and additional funds will be allocated based on a formula derived from the 2018 list of school districts eligible for differentiated assistance

  12. e

    GIS30: GIS coverage defining sample locations for abiotic datasets on Konza...

    • portal.edirepository.org
    bin
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Skibbe (2025). GIS30: GIS coverage defining sample locations for abiotic datasets on Konza Prairie [Dataset]. http://doi.org/10.6073/pasta/a5f6e9e8bc9b386b9ebd512591f1763d
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    EDI
    Authors
    Adam Skibbe
    Time period covered
    Jan 1, 1972 - Dec 31, 2012
    Area covered
    Variables measured
    FID, NAME, TUBE, Shape, DATAID, X_COOR1, Y_COOR1, ALTITUDE, Datacode, RainGauge, and 2 more
    Description

    This dataset defines the sample locations for various abiotic data collected on Konza Prairie (rain gauges, soil moisture, and stream data). Included in this are locations for 11 rain gauges (GIS300) on Konza Prairie. The Konza headquarters weather station consists of two gauges which are operated year-round. The remaining Konza-operated gauges run from April 1 to November 1. These data are to be used in conjunction with the APT01 (precipitation) dataset. GIS305 contains the locations where measurements of soil moisture (%volume) are taken on Konza Prairie. These data are to be used in conjunction with the ASM01 (soil moisture) dataset. GIS315 defines the locations of stream gauges (5 including one operated by the USGS*) in the Kings Creek watershed. (*http://waterdata.usgs.gov/nwis/nwisman/?site_no=06879650)

  13. Terrain

    • hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated Jul 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain [Dataset]. https://hub.arcgis.com/datasets/58a541efc59545e6b7137f961d7de883
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  14. d

    Data from: Map 12: ArcGIS layer showing contours of the difference in May...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Map 12: ArcGIS layer showing contours of the difference in May Mean water levels from the water-year periods 1990 to 1999 and 2000 to 2009 (feet) [Dataset]. https://catalog.data.gov/dataset/map-12-arcgis-layer-showing-contours-of-the-difference-in-may-mean-water-levels-from-the-w
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  15. d

    Data from: Digital data for the Salinas Valley Geological Framework,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Salinas, Salinas Valley, California
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  16. e

    GIS17 A GIS Coverage Defining Roads in and around Konza Prairie

    • portal.edirepository.org
    bin
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Skibbe (2025). GIS17 A GIS Coverage Defining Roads in and around Konza Prairie [Dataset]. http://doi.org/10.6073/pasta/40b06406a522a7a6375872203f52ebc5
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    EDI
    Authors
    Adam Skibbe
    Time period covered
    Jan 1, 1977 - Dec 31, 2012
    Area covered
    Variables measured
    FID, NAME, TYPE, Shape, DATAID, LENGTH, DATACODE
    Description

    This dataset defines the roads in and around the Konza Prairie Biological Station (KPBS). The road data shows locations of Konza maintained and county/state/federal access roads as well as defining gravel or paved. Data type one (GIS170) defines roads within KPBS, and type two (GIS171) defines roads surrounding KPBS. These data are available as zipped (.zip) shapefiles (.shp).

  17. GIS19 A GIS Coverage Defining Permanent Structures on Konza Prairie...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Briggs (2019). GIS19 A GIS Coverage Defining Permanent Structures on Konza Prairie (1977-present) [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-knz%2F219%2F3
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    John Briggs
    Time period covered
    Jan 1, 1977 - Dec 31, 2016
    Area covered
    Description

    This dataset defines the permanent structures located on the Konza Prairie Biological Station (KBPS). The structure data include building names and addresses. These data are available to download as zipped shapefiles (.zip), compressed Google Earth KML layers (.kmz), and associated EML metadata (.xml).

  18. H

    Cattle Density GIS Data Layer

    • dataverse.harvard.edu
    Updated Aug 12, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Main (2015). Cattle Density GIS Data Layer [Dataset]. http://doi.org/10.7910/DVN/1C7PRQ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2015
    Dataset provided by
    Harvard Dataverse
    Authors
    Martin Main
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    GIS Layers used to create the hunting habitat model, which include Cattle density, Distance from edge, Dominant landcover, Forest edge density, Forest patch size, Improved pasture patch size, Landcover, and Percent forest cover. Area of analysis defined by Minimum Convex Polygons created from Florida panther GPS data.

  19. w

    Wetlands - Forests Practices Regulation

    • geo.wa.gov
    • data-wadnr.opendata.arcgis.com
    • +1more
    Updated Jan 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington State Department of Natural Resources (2017). Wetlands - Forests Practices Regulation [Dataset]. https://geo.wa.gov/datasets/02b250843e44485ea7d736b34fa80998
    Explore at:
    Dataset updated
    Jan 31, 2017
    Dataset authored and provided by
    Washington State Department of Natural Resources
    Area covered
    Description

    Click to downloadClick for metadataService URL: https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_Water_Type/MapServer/4For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.The DNR Forest Practices Wetlands Geographic Information System (GIS) Layer is based on the National Wetlands Inventory (NWI). In cooperation with the Washington State Department of Ecology, DNR Forest Practices developed a systematic reclassification of the original USFWS wetlands codes into WAC 222-16-035 types. The reclassification was done in 1995 according to the Forest Practice Rules in place at the time. The WAC's for defining wetlands are 222-16-035 and 222-16-050.The DNR Forest Practices Wetlands Geographic Information System (GIS) Layer is based on the National Wetlands Inventory (NWI). In cooperation with the Washington State Department of Ecology, DNR Forest Practices developed a systematic reclassification of the original USFWS wetlands codes into WAC 222-16-035 types. The reclassification was done in 1995 according to the Forest Practice Rules in place at the time. The WAC's for defining wetlands are 222-16-035 and 222-16-050.It is intended that these data be only a first step in determining whether or not wetland issues have been or need to be addressed in an area. The DNR Forest Practices Division and the Department of Ecology strongly supports the additional use of hydric soils (from the GIS soils layer) to add weight to the call of 'wetland'. Reports from the Department of Ecology indicate that these data may substantially underestimate the extent of forested wetlands. Various studies show the NWI data is 25-80% accurate in forested areas. Most of these data were collected from stereopaired aerial photos at a scale of 1:58,000. The stated accuracy is that of a 1:24,000 map, or plus or minus 40 feet. In addition, some parts of the state have data that are 30 years old and only a small percentage have been field checked. Thus, for regulatory purposes, the user should not rely solely on these data. On-the-ground checking must accompany any regulatory call based on these data.The reclassification is based on the USFWS FWS_CODE. The FWS_CODE is a concatenation of three subcomponents: Wetland system, class, and water regime. Forest Practices further divided the components into system, subsystem, class, subclass, water regime, special modifiers, xclass, subxclass, and xsystem. The last three items (xsomething) are for wetland areas which do not easily lend themselves to one class alone. The resulting classification system uses two fields: WLND_CLASS and WLND_TYPE. WLND_CLASS indicates whether the polygon is a forested wetland (F), open water (O), or a vegetated wetland (W). WLND_TYPE, indicates whether the wetland is a type A (1), type B (2), or a generic wetland (3) that doesn't fit the categories for A or B type wetlands. WLND_TYPE = 0 (zero) is used where WLND_CLASS = O (letter "O").

    The wetland polygon is classified as F, forested wetland; O, open water; or W, vegetated wetland depending on the following FWS_CODE categories: F O W --------------------------------------------------- Forested Open Vegetated Wetland Water Wetland --------------------------------------------PFO* POW PUB5 E2FO PRB* PML2 PUB1-4 PEM* PAB* L2US5 PUS1-4 L2EM2 PFL* PSS* L1RB* PML1 L1UB*
    L1AB* L1OW L2RB* L2UB* L2AB* L2RS* L2US1-4 L2OW

    • indicates inclusion of the subcategory (ie. PEM* includes PEM1F, PEM1FB, etc.).

    DNR FOREST PRACTICES WETLANDS DATASET ON FPARS Internet Mapping Website: The FPARS Resource Map and Water Type Map display Forested, Type A, Type B, and "other" wetlands. Open water polygons are not displayed on the FPARS Resource Map and Water Type Map in an attempt to minimize clutter. The following code combinations are found in the DNR Forest Practices wetlands dataset:

    WLND_CLASS WLND_TYPE wetland polygon classification F 3 Forested wetland as defined in WAC 222-16-035 O 0 *NWI open water (not displayed on FPARS Resource or Water Type Maps) W 1 Type A Wetland as defined in WAC 222-16-035 W 2 Type B Wetland as defined in WAC 222-16-035 W 3 other wetland

    • NWI open water polygons are indicated by WLND_CLASS = O and WLND_TYPE = 0. Open water is used in the USFWS and WAC 222-16-035 classification system. These open water polygons are not included in the FPARS Resource Map and Water Type Map views of this dataset in an attempt to minimize clutter on the FPARS maps.
  20. e

    Data from: GIS02 GIS Coverages Defining the Konza Prairie Experimental...

    • portal.edirepository.org
    • search.dataone.org
    kmz, zip
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Briggs (2018). GIS02 GIS Coverages Defining the Konza Prairie Experimental Watershed Treatments [Dataset]. http://doi.org/10.6073/pasta/e704707f1fda0239540f64871cb9f8d1
    Explore at:
    zip(76035), kmz(225458), zip(76030), zip(75869), kmz(225603), kmz(133921), kmz(231196), zip(42070), kmz(220364), zip(16016), zip(75835), zip(76299), kmz(42389), zip(72170), kmz(79071), kmz(221782), zip(78855), kmz(199363), kmz(226341), zip(71748), zip(77615), zip(205174), kmz(234557), zip(40838), kmz(233685), kmz(93586)Available download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    EDI
    Authors
    John Briggs
    Time period covered
    Jan 1, 1977 - Dec 31, 2017
    Area covered
    Description

    This dataset defines the experimental watershed treatments for the Konza Prairie Biological Station (KPBS). These treatments have changed over time to represent changes in both physical boundaries as well as changes in watershed treatments. These data are available to download as zipped shapefiles (.zip), compressed Google Earth KML layers (.kmz), and associated EML metadata (.xml).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Three GIS datasets defining areas permissive for the occurrence of uranium-bearing, solution-collapse breccia pipes in northern Arizona and southeast Utah [Dataset]. https://catalog.data.gov/dataset/three-gis-datasets-defining-areas-permissive-for-the-occurrence-of-uranium-bearing-solutio

Data from: Three GIS datasets defining areas permissive for the occurrence of uranium-bearing, solution-collapse breccia pipes in northern Arizona and southeast Utah

Related Article
Explore at:
Dataset updated
Nov 26, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Utah
Description

Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.

Search
Clear search
Close search
Google apps
Main menu