58 datasets found
  1. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  2. Wind Techno-economic Exclusion

    • catalog.data.gov
    • gis.data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Wind Techno-economic Exclusion [Dataset]. https://catalog.data.gov/dataset/wind-techno-economic-exclusion-29d91
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    Description

    The site suitability criteria included in the techno-economic land use screens are listed below. As this list is an update to previous cycles, tribal lands, prime farmland, and flood zones are not included as they are not technically infeasible for development. The techno-economic site suitability exclusion thresholds are presented in table 1. Distances indicate the minimum distance from each feature for commercial scale wind developmentAttributes: Steeply sloped areas: change in vertical elevation compared to horizontal distancePopulation density: the number of people living in a 1 km2 area Urban areas: defined by the U.S. Census. Water bodies: defined by the U.S. National Atlas Water Feature Areas, available from Argonne National Lab Energy Zone Mapping Tool Railways: a comprehensive database of North America's railway system from the Federal Railroad Administration (FRA), available from Argonne National Lab Energy Zone Mapping Tool Major highways: available from ESRI Living Atlas Airports: The Airports dataset including other aviation facilities as of July 13, 2018 is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The Airports database is a geographic point database of aircraft landing facilities in the United States and U.S. Territories. Attribute data is provided on the physical and operational characteristics of the landing facility, current usage including enplanements and aircraft operations, congestion levels and usage categories. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data Product. Available from Argonne National Lab Energy Zone Mapping Tool Active mines: Active Mines and Mineral Processing Plants in the United States in 2003Military Lands: Land owned by the federal government that is part of a US military base, camp, post, station, yard, center, or installation. Table 1 Wind Steeply sloped areas >10o Population density >100/km2 Capacity factor <20% Urban areas <1000 m Water bodies <250 m Railways <250 m Major highways <125 m Airports <5000 m Active mines <1000 m Military Lands <3000m For more information about the processes and sources used to develop the screening criteria see sources 1-7 in the footnotes. Data updates occur as needed, corresponding to typical 3-year CPUC IRP planning cyclesFootnotes:[1] Lopez, A. et. al. “U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis,” 2012. https://www.nrel.gov/docs/fy12osti/51946.pdf[2] https://greeningthegrid.org/Renewable-Energy-Zones-Toolkit/topics/social-environmental-and-other-impacts#ReadingListAndCaseStudies[3] Multi-Criteria Analysis for Renewable Energy (MapRE), University of California Santa Barbara. https://mapre.es.ucsb.edu/[4] Larson, E. et. al. “Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Interim Report.” Princeton University, 2020. https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf.[5] Wu, G. et. al. “Low-Impact Land Use Pathways to Deep Decarbonization of Electricity.” Environmental Research Letters 15, no. 7 (July 10, 2020). https://doi.org/10.1088/1748-9326/ab87d1.[6] RETI Coordinating Committee, RETI Stakeholder Steering Committee. “Renewable Energy Transmission Initiative Phase 1B Final Report.” California Energy Commission, January 2009.[7] Pletka, Ryan, and Joshua Finn. “Western Renewable Energy Zones, Phase 1: QRA Identification Technical Report.” Black & Veatch and National Renewable Energy Laboratory, 2009. https://www.nrel.gov/docs/fy10osti/46877.pdf.[8]https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Urban+Areas[9]https://ezmt.anl.gov/[10]https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4[11]https://mrdata.usgs.gov/mineplant/Credits Title: Techno-economic screening criteria for utility-scale wind energy installations for Integrated Resource Planning Purpose for creation: These site suitability criteria are for use in electric system planning, capacity expansion modeling, and integrated resource planning. Keywords: wind energy, resource potential, techno-economic, IRP Extent: western states of the contiguous U.S. Use Limitations The geospatial data created by the use of these techno-economic screens inform high-level estimates of technical renewable resource potential for electric system planning and should not be used, on their own, to guide siting of generation projects nor assess project-level impacts.Confidentiality: Public ContactEmily Leslie Emily@MontaraMtEnergy.comSam Schreiber sam.schreiber@ethree.com Jared Ferguson Jared.Ferguson@cpuc.ca.govOluwafemi Sawyerr femi@ethree.com

  3. Places in the Geographic Names Information System (GNIS)

    • hub.arcgis.com
    • gisnation-sdi.hub.arcgis.com
    • +1more
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Places in the Geographic Names Information System (GNIS) [Dataset]. https://hub.arcgis.com/maps/f608ceffa9e142c08b7b72653f7ceeb0
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Places in the Geographic Names Information System (GNIS)This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays populated places from the Geographic Names Information System (GNIS). Per USGS, “the Geographic Names Information System (GNIS) is the federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types.”Trenton, New JerseyData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Places) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 34 (Geographic Names Information System (GNIS) - USGS National Map Downloadable Data Collection)OGC API Features Link: (Populated Places in the Geographic Names Information System (GNIS) - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: U.S. Board on Geographic NamesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Cultural Resources Theme Community. Per the Federal Geospatial Data Committee (FGDC), Cultural Resources are defined as "features and characteristics of a collection of places of significance in history, architecture, engineering, or society. Includes National Monuments and Icons."For other NGDA Content: Esri Federal Datasets

  4. BLM National SMA Surface Management Agency Area Polygons

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Dec 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2024). BLM National SMA Surface Management Agency Area Polygons [Dataset]. https://catalog.data.gov/dataset/blm-natl-sma-surface-management-agency-area-polygons-national-geospatial-data-asset-ngda
    Explore at:
    Dataset updated
    Dec 27, 2024
    Dataset provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Description

    The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.

  5. Collection of global datasets for the study of floods, droughts and their...

    • zenodo.org
    bin
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre (2020). Collection of global datasets for the study of floods, droughts and their interactions with human societies [Dataset]. http://doi.org/10.5281/zenodo.3608634
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology.

    The collection is a descriptive list, holding the following information for each dataset:

    • Category - as structured in Lindersson et al. (in preparation).
    • Sub-category- as structured in Lindersson et al. (in preparation).
    • Abbreviation - official or as specified in Lindersson et al. (in preparation).
    • Title - full title of dataset.
    • Product(s) - type of product(s) offered by the dataset.
    • Period - time period covered by the dataset, not defined for all datasets.
    • Temporal resolution - not defined for static datasets.
    • Angular spatial resolution - only defined for gridded datasets.
    • Metric spatial resolution - only defined for gridded datasets.
    • Map scale
    • Extent - geographic coverage of dataset given in latitude limits.
    • Description
    • Creating institute(s)
    • Data type - raster, vector or tabular.
    • File format
    • Primary EO type - specifies if the product primarily is based on remote sensing, ground-based data, or a hybrid between remote sensing and ground-based data.
    • Data sources - lists the data sources behind the dataset, to the extent this is feasible.
    • Data sources also in this table - data sources that are also included as datasets in this collection.
    • Intentionally compatible with - defines other datasets in this collection that the dataset is intentinoally compatible with.
    • Citation - dataset reference or credit.
    • Documentation - dataset documentation.
    • Web address - dataset access link.

    NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.

  6. Railroads

    • data-isdh.opendata.arcgis.com
    • resilience.climate.gov
    • +3more
    Updated Jun 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). Railroads [Dataset]. https://data-isdh.opendata.arcgis.com/datasets/fedmaps::railroads
    Explore at:
    Dataset updated
    Jun 27, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    TransportationThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau, displays primary roads, secondary roads, local roads and railroads in the United States. According to the USCB, "This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways."Interstates 20 and 635Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (TIGERweb/Transportation) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 155 (Series Information for All Roads County-based TIGER/Line Shapefiles, Current)OGC API Features Link: (Transportation - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: Census Feature Class Codes (CFCC)For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  7. o

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • explore.openaire.eu
    • zenodo.org
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432939
    Explore at:
    Dataset updated
    Apr 11, 2022
    Authors
    Jie Liu; Guang-Fu Zhu
    Area covered
    Tibetan Plateau
    Description

    Introduction Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results. The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets: (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder. (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro. (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder. Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific. More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document. Data processing We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package. Version Version 2022.1. Acknowledgements This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files. Citation Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940 Contacts Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn; Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn Institution: Kunming Institute of Botany, Chinese Academy of Sciences Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China Copyright This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). {"references": ["Bolch, T., Kulkarni, A., K\u00e4\u00e4b, A., Huggel, C., Paul, F., Cogley, J. G., Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336, 310-314. https...

  8. a

    Medical Service Study Areas

    • hub.arcgis.com
    • data.ca.gov
    • +2more
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://hub.arcgis.com/datasets/dce6f4b66f4e4ec888227eda905ed8fd
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    CA Department of Health Care Access and Information
    Area covered
    Description

    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).Check the Data Dictionary for field descriptions.Search for the Medical Service Study Area data on the CHHS Open Data Portal.Checkout the California Healthcare Atlas for more Medical Service Study Area information.This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.

  9. d

    Statistical Area 3 2025 - Dataset - data.govt.nz - discover and use data

    • catalogue.data.govt.nz
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Statistical Area 3 2025 - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/statistical-area-3-2025
    Explore at:
    Dataset updated
    Dec 2, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates. This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 929 SA3s, including 4 non-digitised SA3s. The SA3 geography aims to meet three purposes: approximate suburbs in major, large, and medium urban areas, in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities, minimise data suppression. SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations. Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s. Zero or nominal population SA3s To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations. Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority. Small population island SA2s are included in their adjacent land-based SA3. Island SA2s outside territorial authority or region are the same in the SA3 geography. Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification. Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority. Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council. The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name): 70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region. SA3 numbering and naming Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District). SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained. ​ High-definition version This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. ​ Macrons Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’. ​ Digital data Digital boundary data became freely available on 1 July 2007 ​ Further information To download geographic classifications in table formats such as CSV please use Ariā For more information please refer to the Statistical standard for geographic areas 2023. Contact: geography@stats.govt.nz

  10. d

    Statistical Area 1 Higher Geographies 2025 - Dataset - data.govt.nz -...

    • catalogue.data.govt.nz
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Statistical Area 1 Higher Geographies 2025 - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/statistical-area-1-higher-geographies-2025
    Explore at:
    Dataset updated
    Dec 9, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates. This dataset is the definitive set of statistical area 1 (SA1) boundaries concorded to higher geographies as at 1 January 2025. This version contains 33,164 SA1s, including 16 with empty or null geometries (non-digitised SA1s). SA1 is an output geography that allows the release of more detailed information about population characteristics than is available at the meshblock level. Built by joining meshblocks, SA1s have an ideal size range of 100–200 residents, and a maximum population of about 500. This is to minimise suppression of population data in multivariate statistics tables. This SA1 higher geographies 2025 file is a correspondence, or concordance, which relates SA1s to larger geographic areas or 'higher geographies'. The higher geographies contained in this concordance are: statistical area 2 (SA22025), statistical area 3 (SA32025), urban rural (UR2025), and urban rural indicator (IUR2025), urban accessibility indicator (IUA), functional urban area (FUA), indicator functional urban area (IFUA) and functional urban area type (TFUA), territorial authority (TA2025), and regional council (REGC2025). The geography urban accessibility indicator (IUA) was first published in 2020 and added to this concordance in 2022. ​ High-definition version This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. ​ Macrons Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’. Digital data Digital boundary data became freely available on 1 July 2007. ​ Further information To download geographic classifications in table formats such as CSV please use Ariā For more information please refer to the Statistical standard for geographic areas 2023. Contact: geography@stats.govt.nz

  11. S

    Statistical Area 1 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Statistical Area 1 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120971-statistical-area-1-2025/
    Explore at:
    mapinfo mif, geopackage / sqlite, dwg, pdf, mapinfo tab, kml, geodatabase, csv, shapefileAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Oceania, Te Ika-a-Māui / North Island
    Description

    This dataset is the definitive version of the annually released statistical area 1 (SA1) boundaries as at 1 January 2025, as defined by Stats NZ. This version contains 33,164 SA1s (33,148 digitised and 16 with empty or null geometries (non-digitised)).

    SA1 is an output geography that allows the release of more low-level data than is available at the meshblock level. Built by joining meshblocks, SA1s have an ideal size range of 100–200 residents, and a maximum population of about 500. This is to minimise suppression of population data in multivariate statistics tables.

    The SA1 should:

    form a contiguous cluster of one or more meshblocks,

    be either urban, rural, or water in character,

    be small enough to:

    • allow flexibility for aggregation to other statistical geographies,

    • allow users to aggregate areas into their own defined communities of interest,

    form a nested hierarchy with statistical output geographies and administrative boundaries. It must:

    • be built from meshblocks,

    • either define or aggregate to define SA2s, urban rural areas, territorial authorities, and regional councils.

    SA1s generally have a population of 100–200 residents, with some exceptions:

    • SA1s with nil or nominal resident populations are created to represent remote mainland areas, unpopulated islands, inland water, inlets, or oceanic areas.

    • Some SA1s in remote rural areas and urban industrial or business areas have fewer than 100 residents.

    • Some SA1s that contain apartment blocks, retirement villages, and large non-residential facilities (prisons, boarding schools, etc.) have more than 500 residents.

    SA1 numbering

    SA1s are not named. SA1 codes have seven digits starting with a 7 and are numbered approximately north to south. Non-digitised codes start with 79.

    As new SA1s are created, they are given the next available numeric code. If the composition of an SA1 changes through splitting or amalgamating different meshblocks, the SA1 is given a new code. The previous code no longer exists within that version and future versions of the SA1 classification.

    Digitised and non-digitised SA1s

    The digital geographic boundaries are defined and maintained by Stats NZ.

    Aggregated from meshblocks, SA1s cover the land area of New Zealand, the water area to the 12-mile limit, the Chatham Islands, Kermadec Islands, sub-Antarctic islands, off-shore oil rigs, and Ross Dependency. The following 16 SA1s are held in non-digitised form.

    7999901; New Zealand Economic Zone, 7999902; Oceanic Kermadec Islands,7999903; Kermadec Islands, 7999904; Oceanic Oil Rig Taranaki,7999905; Oceanic Campbell Island, 7999906; Campbell Island, 7999907; Oceanic Oil Rig Southland, 7999908; Oceanic Auckland Islands, 7999909; Auckland Islands, 7999910; Oceanic Bounty Islands, 7999911; Bounty Islands, 7999912; Oceanic Snares Islands, 7999913; Snares Islands, 7999914; Oceanic Antipodes Islands, 7999915; Antipodes Islands, 7999916; Ross Dependency.

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  12. G

    Geographic Feature Code Catalogue

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    csv, html
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of British Columbia (2025). Geographic Feature Code Catalogue [Dataset]. https://open.canada.ca/data/en/dataset/90653877-c55a-435f-bd71-dca4fd55bb0e
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Government of British Columbiahttps://www2.gov.bc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The Geographic Feature Code Catalogue contains codes and definitions for geographic features captured and mapped by various BC Government Ministries, which are responsible for their definitions. These codes (fcodes) are embedded into geographic data to mark them, as an aid to integrating data from many sources. (WHSE_CORP.CORP_FEATURES)

  13. f

    Health Insurance 2021 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • arc-garc.opendata.arcgis.com
    • +2more
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Health Insurance 2021 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/47f55267af1b4e4da60b9433421407cc
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  14. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://hiu.state.gov/data/cartographic_guidance_bulletins/ Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: - International Boundaries (Rank 1); - Other Lines of International Separation (Rank 2); and - Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the feature—either line geometry or attribute—but it is still conceptually the same feature. The “PARENTID” field

  15. Soil Survey Geographic Database (SSURGO)

    • agdatacommons.nal.usda.gov
    pdf
    Updated Feb 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Natural Resources Conservation Service (2024). Soil Survey Geographic Database (SSURGO) [Dataset]. http://doi.org/10.15482/USDA.ADC/1242479
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Authors
    USDA Natural Resources Conservation Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The SSURGO database contains information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS (Natural Resources Conservation Service). The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. The maps outline areas called map units. The map units describe soils and other components that have unique properties, interpretations, and productivity. The information was collected at scales ranging from 1:12,000 to 1:63,360. More details were gathered at a scale of 1:12,000 than at a scale of 1:63,360. The mapping is intended for natural resource planning and management by landowners, townships, and counties. Some knowledge of soils data and map scale is necessary to avoid misunderstandings. The maps are linked in the database to information about the component soils and their properties for each map unit. Each map unit may contain one to three major components and some minor components. The map units are typically named for the major components. Examples of information available from the database include available water capacity, soil reaction, electrical conductivity, and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland; and limitations affecting recreational development, building site development, and other engineering uses. SSURGO datasets consist of map data, tabular data, and information about how the maps and tables were created. The extent of a SSURGO dataset is a soil survey area, which may consist of a single county, multiple counties, or parts of multiple counties. SSURGO map data can be viewed in the Web Soil Survey or downloaded in ESRI® Shapefile format. The coordinate systems are Geographic. Attribute data can be downloaded in text format that can be imported into a Microsoft® Access® database. A complete SSURGO dataset consists of:

    GIS data (as ESRI® Shapefiles) attribute data (dbf files - a multitude of separate tables) database template (MS Access format - this helps with understanding the structure and linkages of the various tables) metadata

    Resources in this dataset:Resource Title: SSURGO Metadata - Tables and Columns Report. File Name: SSURGO_Metadata_-_Tables_and_Columns.pdfResource Description: This report contains a complete listing of all columns in each database table. Please see SSURGO Metadata - Table Column Descriptions Report for more detailed descriptions of each column.

    Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Metadata - Table Column Descriptions Report. File Name: SSURGO_Metadata_-_Table_Column_Descriptions.pdfResource Description: This report contains the descriptions of all columns in each database table. Please see SSURGO Metadata - Tables and Columns Report for a complete listing of all columns in each database table.

    Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Data Dictionary. File Name: SSURGO 2.3.2 Data Dictionary.csvResource Description: CSV version of the data dictionary

  16. D

    Community Reporting Areas

    • data.seattle.gov
    • s.cnmilf.com
    • +3more
    application/rdfxml +5
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Community Reporting Areas [Dataset]. https://data.seattle.gov/dataset/Community-Reporting-Areas/h66v-hiux
    Explore at:
    application/rssxml, csv, tsv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 3, 2025
    Description
    Please Note: Community Reporting Areas (CRA) have been updated to follow the 2020 census tract lines which resulted in minor changes to some boundary conditions. They have also been extended into water areas to allow the assignment of CRAs to overwater housing and businesses. To exclude the water polygons from a map choose the filter, water=0.

    Community reporting areas (CRAs) are designed to address a gap that existed in city geography. The task of reporting citywide information at a "community-like level" across all departments was either not undertaken or it was handled in inconsistent ways across departments.

    The CRA geography provides a "common language" for geographic description of the city for reporting purposes. Therefore, this geography may be used by departments for geographic reporting and tracking purposes, as appropriate. The U.S. Census Bureau census tract geography was chosen as the basis of the CRA geography due to their stability through time and link to widely-used demographic data.

    The following criteria for a CRA geography were defined for this effort:
    • no overlapping areas
    • complete coverage of the city
    • suitable scale to represent neighborhood areas/conditions
    • reasonably stable over time
    • consistent with census geography
    • relatively easy to use in a data context
    • familiar system of common place names
    • respects neighborhood district geography to the extent possible
    The following existing geographies were reviewed during this effort:
    • neighborhood planning areas (DON)
    • neighborhood districts (DON/CNC/Neighborhood District Councils)
    • city sectors/neighborhood plan implementation areas (DON)
    • urban centers/urban villages (DPD)
    • population sub-areas (DPD)
    • Neighborhood Map Atlas (City Clerk)
    • Census tract geography
    • topography
    • various other geographic information sources related to neighborhood areas and common place names
    This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.
  17. d

    Digital database of structure contour and isopach maps of multiple...

    • catalog.data.gov
    • datasets.ai
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital database of structure contour and isopach maps of multiple subsurface units, Michigan and Illinois Basins, USA [Dataset]. https://catalog.data.gov/dataset/digital-database-of-structure-contour-and-isopach-maps-of-multiple-subsurface-units-michig-634cc
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    This digital data release presents contour data from multiple subsurface geologic horizons as presented in previously published summaries of the regional subsurface configuration of the Michigan and Illinois Basins. The original maps that served as the source of the digital data within this geodatabase are from the Geological Society of America’s Decade of North American Geology project series, “The Geology of North America” volume D-2, chapter 13 “The Michigan Basin” and chapter 14 “Illinois Basin Region”. Contour maps in the original published chapters were generated from geophysical well logs (generally gamma-ray) and adapted from previously published contour maps. The published contour maps illustrated the distribution sedimentary strata within the Illinois and Michigan Basin in the context of the broad 1st order supercycles of L.L. Sloss including the Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, and Tejas supersequences. Because these maps represent time-transgressive surfaces, contours frequently delineate the composite of multiple named sedimentary formations at once. Structure contour maps on the top of the Precambrian basement surface in both the Michigan and Illinois basins illustrate the general structural geometry which undergirds the sedimentary cover. Isopach maps of the Sauk 2 and 3, Tippecanoe 1 and 2, Kaskaskia 1 and 2, Absaroka, and Zuni sequences illustrate the broad distribution of sedimentary units in the Michigan Basin, as do isopach maps of the Sauk, Upper Sauk, Tippecanoe 1 and 2, Lower Kaskaskia 1, Upper Kaskaskia 1-Lower Kaskaskia 2, Kaskaskia 2, and Absaroka supersequences in the Illinois Basins. Isopach contours and structure contours were formatted and attributed as GIS data sets for use in digital form as part of U.S. Geological Survey’s ongoing effort to inventory, catalog, and release subsurface geologic data in geospatial form. This effort is part of a broad directive to develop 2D and 3D geologic information at detailed, national, and continental scales. This data approximates, but does not strictly follow the USGS National Cooperative Geologic Mapping Program's GeMS data structure schema for geologic maps. Structure contour lines and isopach contours for each supersequence are stored within separate “IsoValueLine” feature classes. These are distributed within a geographic information system geodatabase and are also saved as shapefiles. Contour data is provided in both feet and meters to maintain consistency with the original publication and for ease of use. Nonspatial tables define the data sources used, define terms used in the dataset, and describe the geologic units referenced herein. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and accompanying nonspatial tables.

  18. d

    Statistical Area 2 Higher Geographies 2025 - Dataset - data.govt.nz -...

    • catalogue.data.govt.nz
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Statistical Area 2 Higher Geographies 2025 - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/statistical-area-2-higher-geographies-2025
    Explore at:
    Dataset updated
    Dec 15, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates. This dataset is the definitive set of statistical area 2 (SA2) boundaries concorded to higher geographies as at 1 January 2025. This version contains 2,395 SA2s, (2,379 digitised and 16 with empty or null geometries (non-digitised)). This statistical area 2 higher geographies file is a correspondence, or concordance, which relates SA2s to larger geographic areas or 'higher geographies'. The higher geographies contained in this concordance are: statistical area 3 (SA3), territorial authority (TA) and regional council (REGC). Statistical area 2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations. ​ High-definition version This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. ​ Macrons Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’. ​ Digital data Digital boundary data became freely available on 1 July 2007. ​ Further information To download geographic classifications in table formats such as CSV please use Ariā For more information please refer to the Statistical standard for geographic areas 2023. Contact: geography@stats.govt.nz

  19. S

    Meshblock Higher Geographies 2018 (high definition)

    • datafinder.stats.govt.nz
    • catalogue.data.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2017). Meshblock Higher Geographies 2018 (high definition) [Dataset]. https://datafinder.stats.govt.nz/layer/92201-meshblock-higher-geographies-2018-high-definition/
    Explore at:
    geopackage / sqlite, dwg, csv, pdf, mapinfo mif, shapefile, geodatabase, kml, mapinfo tabAvailable download formats
    Dataset updated
    Dec 1, 2017
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Oceania, Te Ika-a-Māui / North Island
    Description

    This dataset is a high definition (HD) version of the annually released meshblock boundaries concorded to higher geographies as at 1 January 2018 as defined by Stats NZ. This version contains 53,589 meshblocks. This Meshblock Higher Geographies 2018 file is a correspondence, or concordance, which relates meshblocks to larger geographic areas or 'higher geographies'. This HD version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. The higher geographies contained in this concordance are: community board (CB2018), constituency (CON2018), Māori constituency (MCON2018), regional council (REGC2018), statistical area 1 (SA12018), statistical area 2 (SA22018), subdivision (TASUB2018), territorial authority (TA2018), urban rural (UR2018), urban rural indicator (IUR2018), and ward (WARD2018). The following geographies were first introduced in 2018: statistical area 1 (SA12018), statistical area 2 (SA22018), urban rural (UR2018), and urban rural indicator (IUR2018). These new geographies are part of the Statistical Standard for Geographic Areas 2018 (SSGA18) which replaces the 1992 New Zealand Standard Areas Classification (NZSAC92). The statistical standard for geographic areas is to be used from 2018 (SSGA18). It defines the Stats NZ input and output geographic classifications and describes their primary purposes, and sets out requirements and guidelines for the creation and maintenance of statistical geographies.

    Digital boundary data became freely available on 1 July 2007.

    Please note that a review of SA2 names was undertaken in early 2018. The review addressed issues with inconsistent naming and applied corrections, resulting in an update to this dataset applied in November 2018. All SA2 codes are unchanged.

    For further information on individual higher geographies, refer to their metadata.

  20. d

    TIGER/Line Shapefile, 2018, state, Alaska, Current Alaska Native Regional...

    • catalog.data.gov
    • datasets.ai
    Updated Feb 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). TIGER/Line Shapefile, 2018, state, Alaska, Current Alaska Native Regional Corporation (ANRC) State-based [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2018-state-alaska-current-alaska-native-regional-corporation-anrc-state-ba
    Explore at:
    Dataset updated
    Feb 24, 2021
    Area covered
    Alaska
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Alaska Native Regional Corporations (ANRCs) were created pursuant to the Alaska Native Claims Settlement Act (ANCSA), which is federal legislation (Pub. L. 92-203, 85 Stat. 688 (1971); 43 U.S.C. 1602 et seq. (2000)) enacted in 1971, as a "Regional Corporation" and organized under the laws of the State of Alaska to conduct both the for-profit and non-profit affairs of Alaska Natives within a defined region of Alaska. For the Census Bureau, ANRCs are considered legal geographic entities. Twelve ANRCs cover the entire state of Alaska except for the area within the Annette Island Reserve (a federally recognized American Indian reservation under the governmental authority of the Metlakatla Indian Community). A thirteenth ANRC represents Alaska Natives who do not live in Alaska and do not identify with any of the twelve corporations. The Census Bureau does not provide data for this thirteenth ANRC because it has no defined geographic extent and thus it does not appear in the TIGER/Line Files. The Census Bureau offers representatives of the twelve non-profit ANRCs in Alaska the opportunity to review and update the ANRC boundaries before each decennial census. The ANRC boundaries are those reported as of January 1, 2010.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b

Geodatabase for the Baltimore Ecosystem Study Spatial Data

Explore at:
257 scholarly articles cite this dataset (View in Google Scholar)
application/vnd.rar(29574980 kilobyte)Available download formats
Dataset updated
May 4, 2012
Dataset provided by
EDI
Authors
Jarlath O'Neal-Dunne; Morgan Grove
Time period covered
Jan 1, 1999 - Jun 1, 2014
Area covered
Description

The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

   BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.


   Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.


   For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.


   Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 


   This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.


   See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt


   See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Search
Clear search
Close search
Google apps
Main menu