Attribute field definitions for data created by Forest Practice GIS on plans and notices for timber harvesting either submitted to, approved, or accepted by, the California Department of Forestry and Fire Protection. Includes roads and hydrology within and adjacent to harvest areas.
Data Dictionary template for Tempe Open Data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Feature Class contains points showing the locations and attributes of fire stations in Hillsborough County including municipalities. Addresses were matched with property, geocoded, rejected addresses were re-matched to street networks, then aligned points to property and aerial where available.
City of Newton, MA GIS Data Dictionary
An in-depth description of the various Natural Resources GIS data layers outlining terms of use, update frequency, attribute explanations, and more. District data layers include: Forest Preserve Boundaries and State Park Boundaries.
Data Dictionary for the Real Property CAMA information attached to parcel datasets.Supplemental information regarding the data values can be found here: https://myplace.cuyahogacounty.us/FieldDefinitions.html
WorldClim 2.1 provides downscaled estimates of climate variables as monthly means over the period of 1970-2000 based on interpolated station measurements. Here we provide analytical image services of precipitation for each month along with an annual mean. Each time step is accessible from a processing template.Time Extent: Monthly/Annual 1970-2000Units: mm/monthCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 16 Bit IntegerData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim v2.1Using Processing Templates to Access TimeThere are 13 processing templates applied to this service, each providing access to the 12 monthly and 1 annual mean precipitation layers. To apply these in ArcGIS Online, select the Image Display options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left-hand menu. From the Processing Template pull down menu, select the version to display.What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides a graph of the time series along with the calculated annual mean value.This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and an area count of precipitation may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from month to month to show seasonal patterns.To calculate precipitation by land area, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Source Data: The datasets behind this layer were extracted from GeoTIF files produced by WorldClim at 2.5 minutes resolution. The mean of the 12 GeoTIFs was calculated (annual), and the 13 rasters were converted to Cloud Optimized GeoTIFF format and added to a mosaic dataset.Citation: Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
Field Name Data Type Description
Statefp Number US Census Bureau unique identifier of the state
Countyfp Number US Census Bureau unique identifier of the county
Countynm Text County name
Tractce Number US Census Bureau unique identifier of the census tract
Geoid Number US Census Bureau unique identifier of the state + county + census tract
Aland Number US Census Bureau defined land area of the census tract
Awater Number US Census Bureau defined water area of the census tract
Asqmi Number Area calculated in square miles from the Aland
MSSAid Text ID of the Medical Service Study Area (MSSA) the census tract belongs to
MSSAnm Text Name of the Medical Service Study Area (MSSA) the census tract belongs to
Definition Text Type of MSSA, possible values are urban, rural and frontier.
TotalPovPop Number US Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701
https://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/datahttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/data
Data Dictionary for State Parks.
description: The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the
https://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/datahttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/data
An in-depth description of the Street Centerline GIS dataset outlining terms of use, update frequency, attribute explanations, and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A platform-agnostic and living geographic information data dictionary for trafficking of wild flora and fauna based on diverse stakeholder input and with the potential to accelerate convergence of information and increase efficacy of interventions.
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains terrain elevation above sea level (ELE) in [m a.s.l.] covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km).
The data is hyperlinked under 'resources' with the following characeristics:
ELE - GISdata (GeoTIFF)
Data format: GEOTIFF
File size : 826.8 MB
There are two temporal representation of solar resource and PVOUT data available:
• Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals)
• Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals)
Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations:
• LTAy_YearlyTotals = LTAy_DailyTotals * 365.25
• LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month
*For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest)
*For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world.
For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the official Street Centerline dataset for the County of Sacramento and the incorporated cities within. The Street Range Index table is a distinct list of street names within the Centerline dataset along with the existing address range for each street by zip code.The Street Name Index table is a distinct list of street names within the Centerline dataset.
This shapefile contains the Defined Area Boundaries for Williamson County, Texas. This shapefile is created and maintained by the Williamson Central Appraisal District Mapping Department. The data in this layer are represented as polygons.
This template covers section 2.5 Resource Fields: Entity and Attribute Information of the Data Discovery Form cited in the Open Data DC Handbook (2022). It completes documentation elements that are required for publication. Each field column (attribute) in the dataset needs a description clarifying the contents of the column. Data originators are encouraged to enter the code values (domains) of the column to help end-users translate the contents of the column where needed, especially when lookup tables do not exist.
An in-depth description of the Hydrology Polygons GIS dataset outlining terms of use, update frequency, attribute explanations, and more.
An in-depth description of the Soils GIS data layers outlining terms of use, update frequency, attribute explanations, and more.
This is an Allegheny County extract of the 2016 US Census Block Groups downloaded from the following website: https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html.
This dataset was previously harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal, at https://openac-alcogis.opendata.arcgis.com/datasets/AlCoGIS::public-wifi-locations/explore.
Department: Geographic Information Systems Group; Department of Administrative Services
See https://www.census.gov/geo/about/contact.html for more information.
Attribute field definitions for data created by Forest Practice GIS on plans and notices for timber harvesting either submitted to, approved, or accepted by, the California Department of Forestry and Fire Protection. Includes roads and hydrology within and adjacent to harvest areas.