Facebook
TwitterAttribute field definitions for data created by Forest Practice GIS on plans and notices for timber harvesting either submitted to, approved, or accepted by, the California Department of Forestry and Fire Protection. Includes roads and hydrology within and adjacent to harvest areas.
Facebook
TwitterField Name Data Type Description
Statefp Number US Census Bureau unique identifier of the state
Countyfp Number US Census Bureau unique identifier of the county
Countynm Text County name
Tractce Number US Census Bureau unique identifier of the census tract
Geoid Number US Census Bureau unique identifier of the state + county + census tract
Aland Number US Census Bureau defined land area of the census tract
Awater Number US Census Bureau defined water area of the census tract
Asqmi Number Area calculated in square miles from the Aland
MSSAid Text ID of the Medical Service Study Area (MSSA) the census tract belongs to
MSSAnm Text Name of the Medical Service Study Area (MSSA) the census tract belongs to
Definition Text Type of MSSA, possible values are urban, rural and frontier.
TotalPovPop Number US Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701
Facebook
Twitterhttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/datahttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/data
An in-depth description of the Street Centerline GIS dataset outlining terms of use, update frequency, attribute explanations, and more.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.
The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:
(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.
(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.
(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.
Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.
More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.
Data processing
We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.
Version
Version 2022.1.
Acknowledgements
This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.
Citation
Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision
Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940
Contacts
Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;
Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn
Institution: Kunming Institute of Botany, Chinese Academy of Sciences
Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China
Copyright
This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
Facebook
TwitterAn in-depth description of the various Natural Resources GIS data layers outlining terms of use, update frequency, attribute explanations, and more. District data layers include: Forest Preserve Boundaries and State Park Boundaries.
Facebook
TwitterPublic Open Space Geographic Information System data collection for Perth and Peel Metropolitan Areas
The public open space (POS) dataset contains polygon boundaries of areas defined as publicly available and open. This geographic information system (GIS) dataset was collected in 2011/2012 using ArcGIS software and aerial photography dated from 2010-2011. The data was collected across the Perth Metro and Peel Region.
POS refer to all land reserved for the provision of green space and natural environments (e.g. parks, reserves, bushland) that is freely accessible and intended for use for recreation purposes (active or passive) by the general public. Four types of “green and natural public open spaces” are distinguished: (1) Park; (2) Natural or Conservation Area; (3) School Grounds; and (4) Residual. Areas where the public are not permitted except on payment or which are available to limited and selected numbers by membership (e.g. golf courses and sports centre facilities) or setbacks and buffers required by legislation are not included.
Initially, potential POSs were identified from a combination of existing geographic information system (GIS) spatial data layers to create a generalized representation of ‘green space’ throughout the Perth metropolitan and Peel regions. Base data layers include: cadastral polygons, metropolitan and regional planning scheme polygons, school point locations, and reserve vesting polygons. The ‘green’ space layer was then visually updated and edited to represent the true boundaries of each POS using 2010-2011 aerial photography within the ArcGIS software environment. Each resulting ’green’ polygon was then classified using a decision tree into one of four possible categories: park, natural or conservation area, school grounds, or residual green space.
Following the classification process, amenity and other information about each POS was collected for polygons classified as “Park” following a protocol developed at the Centre for the Built Environment and Health (CBEH) called POSDAT (Public Open Space Desktop Auditing Tool). The parks were audited using aerial photography visualized using ArcGIS software. . The presence or absence of amenities such as sporting facilities (e.g. tennis courts, soccer fields, skate parks etc) were audited as well as information on the environmental quality (i.e. presence of water, adjacency to bushland, shade along paths, etc), recreational amenities (e.g. presence of BBQ’, café or kiosks, public access toilets) and information on selected features related to personal safety.
The data is stored in an ArcGIS File Geodatabase Feature Class (size 4MB) and has restricted access.
Data creation methodology, data definitions, and links to publications based on this data, accompany the dataset.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The U.S. Geological Survey (USGS), in cooperation with the Illinois Center for Transportation and the Illinois Department of Transportation, prepared hydro-conditioned geographic information systems (GIS) layers for use in the Illinois StreamStats application. These data were used to delineate drainage basins and compute basin characteristics for updated peak flow and flow duration regression equations for Illinois. This dataset consists of raster grid files for elevation (dem), flow accumulation (fac), flow direction (fdr), and stream definition (str900) for each 8-digit Hydrologic Unit Code (HUC) area in Illinois merged into a single dataset. There are 51 full or partial HUC 8s represented by this data set: 04040002, 05120108, 05120109, 05120111, 05120112, 05120113, 05120114, 05120115, 05140202, 05140203, 05140204, 05140206, 07060005, 07080101, 07080104, 07090001, 07090002, 07090003, 07090004, 07090005, 07090006, 07090007, 07110001, 07110004, 07110009, 07120001, 07120002, 071200 ...
Facebook
TwitterAn in-depth description of the various Political Boundaries GIS data layers outlining terms of use, update frequency, attribute explanations, and more. District data layers include: Lake County Boundary, County Board, Judicial Circuit Court Subcircuits, Political Townships, State Representative Districts, State Senate, Congressional Districts, and Voting Precincts.
Facebook
TwitterData Dictionary template for Tempe Open Data.
Facebook
TwitterThis shapefile contains the Defined Area Boundaries for Williamson County, Texas. This shapefile is created and maintained by the Williamson Central Appraisal District Mapping Department. The data in this layer are represented as polygons.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A platform-agnostic and living geographic information data dictionary for trafficking of wild flora and fauna based on diverse stakeholder input and with the potential to accelerate convergence of information and increase efficacy of interventions.
Facebook
TwitterLegislative AuthorizationAssembly Bill 1808 appropriated $4 million to establish the California Geographic Lead Agencies (Lead Agency) to build the capacity of county offices of education (COEs) to ensure that counties are equipped to build the capacity of their local educational agencies (LEAs) to support the continuous improvement of student performance within the state priorities as defined in California Education Code (EC) sections 52060 and 52066 and address the gaps in achievement between student groups as defined in EC Section 52052.PurposeThe 6 to 10 Lead Agencies will work together to support the following goals for all counties. The Lead Agencies will also connect COEs to the other initiatives within California's System of Support.Support the continuous improvement of student performance within the state priorities across student groups as defined in EC sections 52060 and 52066.Address the gaps in achievement between student groups as defined in EC Section 52052.Improve outreach and collaboration with stakeholders to ensure that goals, actions, and services as described in school district and COEs Local Control and Accountability Plans reflect the needs of the community, especially for historically under-represented or low-achieving populations.Serve as a facilitator, resource connector, and capacity builder for COEs.Funding DescriptionEach Lead Agency is selected for a term ending no later than June 30, 2023. Each awardee will receive a minimum of $250,000 and additional funds will be allocated based on a formula derived from the 2018 list of school districts eligible for differentiated assistance
Facebook
TwitterProgrammatically generated Data Dictionary document detailing the Texas Railroads service.
The PDF contains service metadata and a complete list of data fields.
For any questions or issues related to the document, please contact the data owner of the service identified in the PDF and Credits of this portal item.
Related Links
Texas Railroads Service URL
Texas Railroads Portal Item
Facebook
TwitterAn in-depth description of the Edge of Pavement GIS data layer outlining terms of use, update frequency, attribute explanations, and more.
Facebook
TwitterExcel Spreadsheet Data Dictionary for Abatements and TIFs.For more information, please visit Cuyahoga County's Fiscal Hub Incentive Information Site.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the official Street Centerline dataset for the County of Sacramento and the incorporated cities within. The Street Range Index table is a distinct list of street names within the Centerline dataset along with the existing address range for each street by zip code.The Street Name Index table is a distinct list of street names within the Centerline dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This was developed for a forthcoming paper. A reference will be posted here when it is published.
This database supports the work of the Digital Elevation Model Intercomparison eXperiment (DEMIX) working group (Strobl and others, 2021; Guth and others, 2021; Bielski and others, 2024). The four files have the database tables in CSV format.
This version adds to CopDEM, ALOS AW3D30, and FABDEM:
The database contains 1381 tiles, about 10x10 km, in 140 areas. The tiles are based on the local projected grid, a change from earlier versions of the DEMIX database which used geographic outlines.
It does not consider the low altitude coastal DEMs; for those use version 3 (https://zenodo.org/records/13331458 ).
References:
Bielski, C.; López-Vázquez, C.; Grohmann, C.H.; Guth. P.L.; Hawker, L.; Gesch, D.; Trevisani, S.; Herrera-Cruz, V.; Riazanoff, S.; Corseaux, A.; Reuter, H.; Strobl, P., 2024. Novel approach for ranking DEMs: Copernicus DEM improves one arc second open global topography. IEEE Transactions on Geoscience & Remote Sensing. vol. 62, pp. 1-22, 2024, Art no. 4503922, https://doi.org/10.1109/TGRS.2024.3368015
Guth, P.L.; Trevisani, S.; Grohmann, C.H.; Lindsay, J.; Gesch, D.; Hawker, L.; Bielski, C. Ranking of 10 Global One-Arc-Second DEMs Reveals Limitations in Terrain Morphology Representation. Remote Sens. 2024, 16, 3273. https://doi.org/10.3390/rs16173273
Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; López-Vázquez, C.; Carabajal, C.C.; Albinet, C.; Strobl, P. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. https://doi.org/10.3390/rs13183581
Minár, J., Ian S. Evans, Marián Jenčo, 2020, A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction, Earth-Science Reviews, Volume 211, 103414, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2020.103414
Strobl, P.A.; Bielski, C.; Guth, P.L.; Grohmann, C.H.; Muller, J.P.; López-Vázquez, C.; Gesch, D.B.; Amatulli, G.; Riazanoff, S.; Carabajal, C. The Digital Elevation Model Intercomparison eXperiment DEMIX, a community based approach at global DEM benchmarking. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2021, 395–400. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021
Uhe, P., Lucas, C., Hawker, L., Brine, M., Wilkinson, H., Cooper, A., & Sampson, C. (2025). FathomDEM: an improved global terrain map using a hybrid vision transformer model. Environmental Research Letters, 20(3), 034002. https://doi.org/10.1088/1748-9326/ada972
Facebook
TwitterAn in-depth description of the Hydrology Polygons GIS dataset outlining terms of use, update frequency, attribute explanations, and more.
Facebook
TwitterThis dataset consists of summer temperature metrics for Boston, MA. These heat metrics summarize six CAPA Urban Heat Watch program temperature and heat index datasets using geographical boundaries from the Census Tract (CT) layer. Heat datasets were created by Museum of Science, Boston, and the Helmuth Lab at Northeastern University. Heat metrics are presented in the attribute table as mean values of each Heat Watch program dataset for all hexagon features. The six heat values included in this table are July 2019 temperature and heat index in degrees Fahrenheit for each of 3 1-hour periods -- 6 a.m., 3 p.m., and 7 p.m. EDT. The geographic boundaries used to summarize the heat metrics are current as of 2019.
Facebook
TwitterThe Metropolitan Council routinely compiles individual land use plans and plan amendments from communities within the seven-county Twin Cities metropolitan area into a single regional data layer. A principal goal of the Regional Planned Land Use dataset is to allow users to view, analyze and display planned land use data for anywhere in the seven county metropolitan area with a consistent land use classification scheme. The Metropolitan Council uses the Regional Planned Land Use (PLU) data to help monitor growth and plan for regional services such as regional parks, transit service, and wastewater collection and treatment.
Although the planned land use data is based on the locally adopted land use plans and designations for each community, it represent only data that has been submitted to the Metropolitan Council for review per the Metropolitan Land Planning Act of 1995 (Minn. Stat 473.864, Subd 2 and 473.175, Subd 1). See Data Quality Information (Section 2 of this metadata) for specifics about the Metropolitan Land Planning Act of 1995 under Completeness information.
Since there is no official State or Regional land use coding scheme that communities must conform with, the variability of content and codes between communities' land use plans is nearly as vast as the number of communities themselves (187). Differences among communities can range from the implementation of different land use categories to conflicting definitions of similar categories. The PLU dataset attempts to effectively level out the variability among communities by translating communities land use categories and descriptions into a common classification scheme developed and endorsed by MetroGIS (a regional GIS data sharing consortium) participants while retaining each communities' original categories. Although the comparability of land use plans between communities has greatly improved as a result of this translation or "regionalization" of communities' land use codes, it is possible that not all community land use definitions have been precisely translated into the most appropriate regional land use category.
In conjunction with other regional information (i.e., land use trend data, households and jobs forecasts), the PLU data can help communities more easily understand regional and sub-regional planning goals and Council staff, working with individual local units of government, can better plan for the future needs and financing of regional services.
- Contact individual communities for more information on their locally adopted planned land use categories.
- See Data Quality Information (Section 2 of this metadata) for specifics about the development of the regional dataset and its accuracy.
- See Entities and Attributes Information (Section 5 of this metadata) for specifics about the regional land use codes and categories.
Facebook
TwitterAttribute field definitions for data created by Forest Practice GIS on plans and notices for timber harvesting either submitted to, approved, or accepted by, the California Department of Forestry and Fire Protection. Includes roads and hydrology within and adjacent to harvest areas.