100+ datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. Inform E-learning GIS Course

    • png-data.sprep.org
    • tonga-data.sprep.org
    • +13more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://png-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(501586), pdf(1335336), pdf(587295)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  3. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2025). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  4. a

    A call to action- doing critical GIS in a community-engaged introductory GIS...

    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2025). A call to action- doing critical GIS in a community-engaged introductory GIS course [Dataset]. https://usc-geohealth-hub-uscssi.hub.arcgis.com/datasets/a-call-to-action-doing-critical-gis-in-a-community-engaged-introductory-gis-course
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    Spatial Sciences Institute
    Description

    Abstract: Community Engaged Learning (CEL) is a pedagogical approach that involves students, community partners, and instructors working together to analyze and address community-identified concerns through experiential learning. Implementing community-engagement in geography courses and, specifically, in GIS courses is not new. However, while students enrolled in CEL GIS courses critically reflect on social and spatial inequalities, GIS tools themselves are mostly applied in uncritical ways. Yet, CEL GIS courses can specifically help students understand GIS as a socially constructed technology which can not only empower but also disempower the community. This contribution presents the experiences from a community-engaged introductory GIS course, taught at a Predominantly White Institution (PWI) in Virginia (USA) in Spring ’24. It shows how the course helped students gain a conceptual understanding of what is GIS, how to use it, and valuable software skills, while also reflecting about their own privileges, how GIS can (dis)empower the community, and their own role as a GIS analyst. Ultimately, the paper shows how the course supported positive changes in the community, equity in education, reciprocity in university/community relationships, and student civic-mindedness.

  5. m

    GIS course Training Flier

    • maconinsights.maconbibb.us
    Updated Aug 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Macon-Bibb County Government (2021). GIS course Training Flier [Dataset]. https://maconinsights.maconbibb.us/documents/ed385f781f584f48b26bf5d1fd967611
    Explore at:
    Dataset updated
    Aug 19, 2021
    Dataset authored and provided by
    Macon-Bibb County Government
    Area covered
    Description

    This is GIS course announcement flier.

  6. a

    Getting Started with GIS

    • hub.arcgis.com
    Updated Jan 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Getting Started with GIS [Dataset]. https://hub.arcgis.com/documents/52a04f17dfa845d79036ea5f341be606
    Explore at:
    Dataset updated
    Jan 30, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Get an introduction to the basic components of a GIS. Learn fundamental concepts that underlie the use of a GIS with hands-on experience with maps and geographic data.

  7. a

    HOW I DISCOVERED A CAREER IN GIS.

    • rwanda.africageoportal.com
    • africageoportal.com
    • +1more
    Updated Jun 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). HOW I DISCOVERED A CAREER IN GIS. [Dataset]. https://rwanda.africageoportal.com/app/africageoportal::how-i-discovered-a-career-in-gis-
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Description

    I’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.

  8. d

    Data from: GIS Data for Geologic and Structure Maps of the Wallace 1 x 2...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). GIS Data for Geologic and Structure Maps of the Wallace 1 x 2 Degrees Quadrangle, Montana and Idaho [Dataset]. https://catalog.data.gov/dataset/gis-data-for-geologic-and-structure-maps-of-the-wallace-1-x-2-degrees-quadrangle-montana-a
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Idaho, Montana
    Description

    The data release for the geologic and structure maps of the Wallace 1 x 2 degrees quadrangle, Montana and Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1509-A (Harrison and others, 2000). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 16,754 square kilometer, geologically complex Wallace quadrangle in northern Idaho and western Montana, at a publication scale of 1:250,000. The map covers primarily Lake, Mineral, Sanders and Shoshone Counties, but also includes minor parts of Flathead, Lincoln, and Missoula Counties. These GIS data supersede those in the interpretive report: Harrison, J.E., Griggs, A.B., Wells, J.D., Kelley, W.N., Derkey, P.D., and EROS Data Center, 2000, Geologic and structure maps of the Wallace 1- x 2- degree quadrangle, Montana and Idaho: a digital database: U.S. Geological Survey Miscellaneous Investigations Series Map I-1509-A, https://pubs.usgs.gov/imap/i1509a/.

  9. a

    GIS Program Insights

    • gis-request-management-tumwater.hub.arcgis.com
    • gis-request-management-16-government.hub.arcgis.com
    • +1more
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tumwater (WA) (2025). GIS Program Insights [Dataset]. https://gis-request-management-tumwater.hub.arcgis.com/datasets/gis-program-insights
    Explore at:
    Dataset updated
    Jan 8, 2025
    Dataset authored and provided by
    City of Tumwater (WA)
    License
    Description

    An ArcGIS Dashboard used by GIS Managers to show the alignment of GIS activities with organizational goals, GIS program goals and ArcGIS capabilities.

  10. e

    GIS for agriculture education programs

    • gisinschools.eagle.co.nz
    Updated May 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). GIS for agriculture education programs [Dataset]. https://gisinschools.eagle.co.nz/documents/01a255bf473848f3852655bbf30be442
    Explore at:
    Dataset updated
    May 11, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    Explore the content in this pathway to see the role of GIS in agriculture education. Understand the opportunities that GIS opens for students in the career cluster for agriculture, food, and natural resources.

  11. M

    School Program Locations, Minnesota, SY2025-26

    • gisdata.mn.gov
    ags_mapserver, csv +5
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education Department (2025). School Program Locations, Minnesota, SY2025-26 [Dataset]. https://gisdata.mn.gov/dataset/struc-school-program-locs
    Explore at:
    csv, shp, fgdb, html, gpkg, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    Education Department
    Area covered
    Minnesota
    Description

    This dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.

    Maintenance of these locations is a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.

    Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. Some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so various records included in this file may in fact be inactive or inaccurately located.

    Note that multiple programs may occur at the same location and are represented as separate records. For example, an elementary and secondary school may be in the same building, but each has a separate record in the data layer. Users may leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.

    This data is also available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.

  12. Esri Health & Human Services grant program

    • coronavirus-resources.esri.com
    • data.amerigeoss.org
    • +1more
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Esri Health & Human Services grant program [Dataset]. https://coronavirus-resources.esri.com/documents/7b83d15f801e46ba8daff84003667b54
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Esri Health & Human Services grant program provides assistance for international Ministries of Health.While the relationship between health and place has long been recognized, modern tools make it possible to leverage geographic information to make faster and better decisions. GIS will help you to understand population needs, identify gaps and allocate your precious resources most effectively._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  13. U

    GIS Data for Geologic Map of the Butte 1 x 2 Degrees Quadrangle, Montana

    • data.usgs.gov
    • datasets.ai
    • +2more
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward Larkin (2024). GIS Data for Geologic Map of the Butte 1 x 2 Degrees Quadrangle, Montana [Dataset]. http://doi.org/10.5066/P9L5THX0
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Edward Larkin
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Sep 29, 2022
    Area covered
    Montana
    Description

    The data release for the geologic map of the Butte 1 degree x 2 degrees quadrangle, Montana, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in Montana Bureau of Mines and Geology Open File Report MBMG 363 (Lewis, 1998). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 4.4 million acre, geologically complex Butte 1 x 2 degrees quadrangle, at a publication scale of 1:250,000. The map covers parts of Deer Lodge, Granite, Jefferson, Lewis and Clark, Missoula, Powell, Ravalli, and Silver Bow Counties. These GIS data supersede ...

  14. Geographic Information Systems, spatial analysis, and HIV in Africa: A...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang (2023). Geographic Information Systems, spatial analysis, and HIV in Africa: A scoping review [Dataset]. http://doi.org/10.1371/journal.pone.0216388
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.

  15. E

    Fifteen Degree Lat/Long Grid (World Coverage)

    • ecaidata.org
    Updated Oct 4, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECAI Clearinghouse (2014). Fifteen Degree Lat/Long Grid (World Coverage) [Dataset]. https://ecaidata.org/dataset/ecaiclearinghouse-id-209
    Explore at:
    Dataset updated
    Oct 4, 2014
    Dataset provided by
    ECAI Clearinghouse
    Description

    A fifteen degree grid in latitude and longitude covering the entire world

  16. University of Mississippi Field Station map GIS data

    • figshare.com
    png
    Updated Aug 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Pintar (2016). University of Mississippi Field Station map GIS data [Dataset]. http://doi.org/10.6084/m9.figshare.3507272.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Aug 2, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Matthew Pintar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mississippi
    Description

    A map of the University of Mississippi Field Station and accompanying GIS data

  17. U

    GIS Data for Geologic Map of the Dillon 1 x 2 Degrees Quadrangle, Idaho and...

    • data.usgs.gov
    • datasets.ai
    • +1more
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Micah Hernandez; Montana Hauke (2024). GIS Data for Geologic Map of the Dillon 1 x 2 Degrees Quadrangle, Idaho and Montana [Dataset]. http://doi.org/10.5066/P9E0IPJR
    Explore at:
    Dataset updated
    Jul 30, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Micah Hernandez; Montana Hauke
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jun 20, 2024
    Area covered
    Idaho, Montana
    Description

    The data release for the geologic map of the Dillon 1 x 2 degrees quadrangle, Idaho and Montana, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1803-H (Ruppel and others, 1993). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents the geospatial data for the geologic map that is published as one plate. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 4.3 million acre, geologically complex Dillon 1 x 2 degrees quadrangle, at a publication scale of 1:250,000. The map covers primarily Beaverhead, Madison, Silver Bow, Deer Lodge, and Lemhi Counties, but also includes minor parts of Ravalli, Granite, and ...

  18. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  19. GIS Program Hub Example

    • geospatial-knowledge-prof-services.hub.arcgis.com
    Updated Sep 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Professional Services (2022). GIS Program Hub Example [Dataset]. https://geospatial-knowledge-prof-services.hub.arcgis.com/content/c99f335b948141d18595d5ff6ec6047a
    Explore at:
    Dataset updated
    Sep 24, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Professional Services
    Description

    Create your own initiative by combining existing applications with a custom site. Use this initiative to form teams around a problem and invite your community to participate.

  20. E

    Six Degree Lat/Long Grid (World Coverage)

    • ecaidata.org
    Updated Oct 4, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECAI Clearinghouse (2014). Six Degree Lat/Long Grid (World Coverage) [Dataset]. https://ecaidata.org/en/dataset/groups/ecaiclearinghouse-id-208
    Explore at:
    Dataset updated
    Oct 4, 2014
    Dataset provided by
    ECAI Clearinghouse
    Area covered
    World
    Description

    A six degree grid in latitude and longitude covering the entire world

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu