Explore the spatial patterns of the Human Development Index (HDI) to identify regional pat- terns and causal factors in the data. The GeoInquiry activity is available here.Educational standards addressed:APHG: VI:B2 Analyze spatial patterns of social and economic development – GNI per capita. APHG: VI:B1 Explain social and economic measures of development – HDI, Gender Inequali- ty Index (GII), Total Fertility Rate (TRF).APHG: VI:B6 Social and economic measures of development — Changes in fertilityand mortalityThis map is part of a Human Geography GeoInquiry activity. Learn more about GeoInquiries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed by under the Small Hydropower Mapping and Improved Geospatial Electrification Planning in Indonesia Project [Project ID: P145273]. The scope of the project was to facilitate and improve the planning and investment process for small hydro development both grid and isolated systems through: building up a central database on smal hydro at national scale and validating the mapping of small hydro in NTT, Maluku, Maluku Utara and Sulawesi improved electrification planning by integrating small hydro potential for the provinces of NTT, Maluku, Maluku Utara and Sulawesi into the planning process. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_indonesia The GIS database contains the following datasets: SHP(promising sites) Admin Divisions Topomas_grid Rivers, Geology Forest_areas Roads RainfallGauges RunoffGauges ElectricSystem, each accompanied by a metadata file. Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Indonesia Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/indonesia-small-hydro-gis-database-2017"
A conference paper describing GIS tools developed in support of the blast loss estimation capability for the Australian Reinsurance Pool Corporation. The paper focus is on GIS tools developed for: exposure database construction and integration of a number of datasets including 3D building geometry
Probability of Development, Northeast U.S. is one of a suite of products from the Nature’s Network project. Nature’s Network is a collaborative effort to identify shared priorities for conservation in the Northeast, considering the value of fish and wildlife species and the natural areas they inhabit.This index represents the integrated probability of development occurring sometime between 2010 and 2080 at the 30 m cell level. It was based on models of historical patterns of urban growth in the Northeast, including the type (low intensity, medium intensity and high intensity), amount and spatial pattern of development, and incorporates the influence of factors such as geophysical conditions (e.g., slope, proximity to open water), existing secured lands, and proximity to roads and urban centers. The projected amount of new development is downscaled from county level forecasts based on a U.S. Forest Service 2010 Resources Planning Act (RPA) assessment. A complementary product, Probability of Development, 2030, Northeast U.S., estimates the probability of development over a shorter time-scale.Note: based on revisions of the sprawl model, this version was revised in July 2017 to better reflect relatively higher probabilities of development in close vicinity to roads, which is most evident in rural areas.Description and DerivationThe derivation of the integrated probability of development layer was complex. Please consult the detailed technical documentation for a full description of the background data used, the computation of integrated probabilities from a stochastic model, and information about the related urban growth model. The following is a summary of the five major steps of the derivation: 1) Determining historical patterns of growthTo understand how past patterns of development have occurred, historical data from NOAA (for Maine and Massachusetts) and the Chesapeake Bay Watershed Landcover Data Series were obtained for the years 1984 (Chesapeake Bay only), 1996, and 2006. The data were used to model the occurrence of six different development transition types: New growthundeveloped to low-intensity (20-49% impervious surface; e.g., single-family homes)undeveloped to medium-intensity (50-79% impervious surface; e.g., small-lot single-family homes)undeveloped to high-intensity (80-100% impervious surface; e.g., apartment complexes and commercial/industrial development) Intensificationlow- to medium-intensitylow- to high-intensitymedium- to high-intensity Separate models were developed to represent development patterns at model points representing landscapes differing along two dimensions: intensity of development and amount of open water. Predictor variables in the models account for the intensity of existing development and landscape context (e.g. intensity and distance of nearest roads, amount of open water). Analysis of the historical data was based on dividing the landscape into “training windows,” 15km on a side, to determine the historical distribution of transition types and the total amount of historical development. 2) Application to current landscapesFuture patterns of development were projected based on the observed historical patterns. As the first step in this process, the entire Northeast was subdivided into 5km “application panes,” each of which was the center pane of a (3 x 3) “application window”, 15 km on a side. Each of these overlapping application windows was then matched to the three most similar training windows on the basis of intensity of development from the UMass integrated landcover layer, (derived in turn from the 2011 National Landcover Database and other sources), as well as geographic proximity, amount of open water, and density of roads. . For each application window, according to how it mapped on to the dimensions of development and open water modelled above, the relative probability of each of the six development transition types was determined on a scale of 30m cells. 3) Predictions for changing land-useFuture urban acreage by county was predicted as part of an assessment for the U.S. Forest Service 2010 Resources Planning Act. The derivation of this product, the new growth forecasted for the 70 years between 2010 and 2080 was transformed into demand in units of 30m cells. Demand for each county (or census Core Based statistical Area, where relevant) was allocated to the corresponding application windows based on the average of the total amount of historical development in the three matched training windows. 4) Combining models of past and predictions for the futureThe relative probability of a transition type occurring in each cell in a window was used to distribute the allocated demand of new growth throughout the window. The result was an actual probability of development for the transition occurring sometime between 2010- 2080 at the 30 m cell level. Already existing urban land-use was intensified (i.e., transitions 4-6) in proportion to historic patterns determined from the matched training windows, and distributed according to the probability of those transition types across the cells in the window. The combining of probabilities and demand to distribute development to cells was done for each transition type in turn; thus, each cell received a separate probability of being developed through each of the six transition types. Through the application of this process in every application window, an actual probability of development was determined for each cell with reference to nine slightly different contexts corresponding to each of the overlapping windows in which the pane was situated. 5) Smoothing and integrationAn additional step was used to create a smooth and continuous probability of development surface, not subject to abrupt differences along arbitrary boundaries. Cell by cell, actual probabilities of development from each of the overlapping windows were combined such that the closer to a window’s center a cell was located, the more weight the probability derived from it was given. Consequently, each cell had one weighted average probability that was part of a continuous probability of development surface for each transition type. Finally, the probability of development by each of six transition types was integrated for each cell. More weight was given to new growth, such that the probability of undeveloped land becoming urban had more impact than the probability of an intensification of development. The final product is a single layer of the integrated probability of development by 2080, extending across the entire Northeast on the scale of 30 m cells.Known Issues and Uncertainties As with any project carried out across such a large area, the Probability of Development dataset is subject to limitations. The results by themselves are not a prescription for on-the-ground action; users are encouraged to verify, with field visits and site-specific knowledge, the value of any areas identified in the project. Known issues and uncertainties include the following:Although this index is a true probability, it is best used in a relative manner to compare values from one location to anotherThe GIS data upon which this product was based, especially the National Land Cover Dataset (NLCD), are imperfect. Errors of both omission and commission affect the mapping of current development and in turn, models of the probability of future development. Likewise, the forecasts in the 2010 Resources Planning Act assessment, the basis of the projected demand for new growth, contains uncertainties. While the model is anticipated to generally correctly indicate where development is likely to occur, predictions at the cell level are not expected to be highly reliable.Users are cautioned against using the data on too small an area (for example, a small parcel of land), as the data may not be sufficiently accurate at that level of resolution.This model is built on the assumption that future patterns of development will match patterns in the past.It is important to recognize that the integrated probability of development is highest near existing roads, largely because the urban growth model does not attempt to predict the building of new roads and the development associated with them, nor does it incorporate county or town level planning for infrastructure. Because proximity to roads is an important and dominant predictor of development at the 30- m cell level in the model, the integrated probability of development surface is heavily weighted towards existing roads. It is not specifically designed to predict where a subdivision might be developed in the future.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
What will be the Size of the GIS Market During the Forecast Period?
Request Free Sample
The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
How is this GIS Industry segmented and which is the largest segment?
The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
Canada
US
Europe
Germany
UK
France
APAC
China
Japan
South Korea
South America
Brazil
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.
Get a glance at the GIS Industry report of share of various segments Request Free Sample
The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th
description: The primary objective of the project is to develop an integrated ecological and socioeconomic land use evaluation model (the Ecosystem Portfolio Model, EPM) for Department of the Interior (DOI) resource managers to use to reconcile the need to maintain the ecological health of South Florida parks and refuges with increasing pressures for higher density development in the agricultural lands outside of the Urban Development Boundary in Miami-Dade County. The EPM has three major components: (1) an ecological value model based on ecological criteria relevant to National Park Service and US Fish & Wildlife Service resource management and species protection mandates; (2) a real estate market-based land value model sensitive to relevant land use/cover attributes indicative of conservation and development decisions; and (3) a set of socioeconomic indicators sensitive to land use/cover changes relevant to regional environmental and ecological planning. The current version is implemented for Miami-Dade County, with the protection of ecological values in the lands between the Everglades and Biscayne National Parks as the focus. The first two components have been implemented in the GIS web-enabled prototype interface and the third component is being developed in draft form in FY08 in consultation with the Florida Atlantic University Dept of Urban and Regional Planning.; abstract: The primary objective of the project is to develop an integrated ecological and socioeconomic land use evaluation model (the Ecosystem Portfolio Model, EPM) for Department of the Interior (DOI) resource managers to use to reconcile the need to maintain the ecological health of South Florida parks and refuges with increasing pressures for higher density development in the agricultural lands outside of the Urban Development Boundary in Miami-Dade County. The EPM has three major components: (1) an ecological value model based on ecological criteria relevant to National Park Service and US Fish & Wildlife Service resource management and species protection mandates; (2) a real estate market-based land value model sensitive to relevant land use/cover attributes indicative of conservation and development decisions; and (3) a set of socioeconomic indicators sensitive to land use/cover changes relevant to regional environmental and ecological planning. The current version is implemented for Miami-Dade County, with the protection of ecological values in the lands between the Everglades and Biscayne National Parks as the focus. The first two components have been implemented in the GIS web-enabled prototype interface and the third component is being developed in draft form in FY08 in consultation with the Florida Atlantic University Dept of Urban and Regional Planning.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Consulting Service market is expected to reach 1637 million by 2023, growing at a CAGR of 15% during the forecast period. Geospatial data analytics, predictive modeling, and situational awareness are key drivers of the market growth. The rising adoption of GIS in various industries, such as transportation, agriculture, energy, and government, is contributing to the market's expansion. The market is segmented based on type, application, and region. By type, the market is divided into custom mapping services, GIS mapping software development, and others. The custom mapping services segment is expected to hold the largest share of the market due to the increasing demand for customized maps for specific purposes. By application, the market is segmented into transportation, agriculture, energy, and others. The transportation segment is expected to witness the highest growth rate due to the growing use of GIS in traffic management, route optimization, and logistics. By region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. North America is expected to hold the largest share of the market due to the presence of key players and the early adoption of GIS technology. Asia Pacific is expected to experience the highest growth rate due to the increasing infrastructure development and urbanization in the region.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach $15.10 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.41% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing adoption of cloud-based GIS solutions enhances accessibility and scalability for diverse industries. The growing need for data-driven decision-making across sectors like retail, real estate, government, and telecommunications is a significant catalyst. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) integrated with GIS analytics are revolutionizing spatial data analysis, enabling more sophisticated predictive modeling and insightful interpretations. The market's segmentation reflects this broad adoption, with retail and real estate, government and utilities, and telecommunications representing key end-user segments, each leveraging GIS analytics for distinct applications such as location optimization, infrastructure management, and network planning. Competitive pressures are shaping the market landscape, with established players like Esri, Trimble, and Autodesk innovating alongside emerging tech companies focusing on AI and specialized solutions. The North American market currently holds a significant share, driven by early adoption and technological advancements. However, Asia-Pacific is expected to witness substantial growth due to rapid urbanization and increasing investment in infrastructure projects. Market restraints primarily involve the high cost of implementation and maintenance of advanced GIS analytics solutions and the need for skilled professionals to effectively utilize these technologies. However, the overall outlook remains extremely positive, driven by continuous technological innovation and escalating demand across multiple sectors. The future trajectory of the GIS analytics market hinges on several factors. Continued investment in research and development, especially in AI and ML integration, will be crucial for unlocking new possibilities. Furthermore, the simplification of GIS analytics software and the development of user-friendly interfaces will broaden accessibility beyond specialized technical experts. Growing data volumes from various sources (IoT, remote sensing) present both opportunities and challenges; efficient data management and analytics techniques will be paramount. The market's success also depends on addressing cybersecurity concerns related to sensitive geospatial data. Strong partnerships between technology providers and end-users will be vital in optimizing solution implementation and maximizing return on investment. Government initiatives promoting the use of GIS technology for smart city development and infrastructure planning will also play a significant role in market expansion. Overall, the GIS analytics market is poised for sustained growth, driven by technological advancements, increasing data availability, and heightened demand for location-based intelligence across a wide range of industries.
The data included are geographic information layers relevant to sportfish ecology, land development, community planning, zoning, coastal zone management, storm water management, future land use, land ownership, and planning tools and techniques aggregated from other sources during the project titled "Knowledge Co-Production for Place-Based Recreational Fishery Conservation in Charlotte Harbor, Florida". Data contributors assume no liability for any errors, omissions, or inaccuracies in the information provided regardless of how caused. The layers are each provided as separate KMZ files.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.
Legacy product - no abstract available
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: Each item has a 5-point Likert response: (1) strongly agree (2) agree (3) neither agree nor disagree (4) disagree (5) strongly disagree.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Cloud GIS Market size was valued at USD 890.81 Million in 2023 and is projected to reach USD 2298.38 Million by 2031, growing at a CAGR of 14.5% from 2024 to 2031.
Key Market Drivers
• Increased Adoption of Cloud Computing: Cloud computing provides scalable resources that can be adjusted based on demand, making it easier for organizations to manage and process large GIS datasets. The pay-as-you-go pricing models of cloud services reduce the need for significant upfront investments in hardware and software, making GIS more accessible to small and medium-sized enterprises.
• Growing Need for Spatial Data Integration: The ability to integrate and analyze large volumes of spatial and non-spatial data helps organizations make more informed decisions. The proliferation of Internet of Things (IoT) devices generates massive amounts of spatial data that can be processed and analyzed using Cloud GIS.
• Advancements in GIS Technology: User-friendly interfaces and visualization tools make it easier for non-experts to use GIS applications. Advanced analytical tools and machine learning algorithms available in cloud platforms enhance the capabilities of traditional GIS.
• Increased Demand for Real-Time Data: Industries like disaster management, transportation, and logistics require real-time data processing and analysis, which is facilitated by Cloud GIS. The need for up-to-date maps and spatial data drives the adoption of cloud-based GIS solutions.
• Collaboration and Sharing Needs: The ability to access GIS data and collaborate from anywhere enhances productivity and supports remote work environments. Cloud GIS supports simultaneous access by multiple users, facilitating better teamwork and data sharing.
• Urbanization and Smart Cities Initiatives: Cloud GIS is crucial for smart city initiatives, urban planning, and infrastructure development, providing the tools needed for efficient resource management. Supports planning and monitoring of sustainable development projects by providing comprehensive spatial analysis capabilities.
• Government and Policy Support: Increased government investment in geospatial technologies and smart infrastructure projects drives the adoption of Cloud GIS. Compliance with regulatory requirements for environmental monitoring and land use planning necessitates the use of advanced GIS tools.
• Industry-Specific Applications: Precision farming and land management benefit from the advanced analytics and data integration capabilities of Cloud GIS. Epidemiology and public health monitoring rely on spatial data analysis for tracking disease outbreaks and resource allocation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Students in geographic information systems and science (GIS) require significant experience outside of spatial analysis, cartography, and other traditional geographic topics. Computer science knowledge, skills, and practices exist as essential components of GIS practice, but coursework in this area is not universally offered in geography or GIS degrees. To support those interested in developing such courses, this paper describes the design and implementation of a server-focused course in WebGIS at University Texas A&M University. We provide an in-depth discussion of the equipment and resources required to build and operate an on-premise CyberGIS server infrastructure suitable for supporting such classes, providing comparisons with an equivalent solution built on Amazon Web Services (AWS). We consider the comparative costs of these systems, including benefits and drawbacks of each. In comparing these deployment options, we outline the technical expertise, monetary investments, operational expenses, and organizational strategies necessary to run server-based CyberGIS courses. Finally, we reflect on assignments and feedback from students and consider their experiences in a course of this nature. This article provides a resource for GIS instructors, academic departments, or other academic units to consider during infrastructure investment, curriculum redesign, the addition of courses in degree plans, or for the development of CyberGIS components.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
City of Cambridge, MA, GIS basemap development project encompasses the land area of City of Cambridge with a 200-foot fringe surrounding the area and Charles River shoreline towards Boston. The basemap data was developed at 1" = 40' mapping scale using digital photogrammetric techniques. Planimetric features; both man-made and natural features like vegetation, rivers have been depicted. These features are important to all GIS/mapping applications and publication. A set of data layers such as Buildings, Roads, Rivers, Utility structures, 1 ft interval contours are developed and represented in the geodatabase. The features are labeled and coded in order to represent specific feature class for thematic representation and topology between the features is maintained for an accurate representation at the 1:40 mapping scale for both publication and analysis. The basemap data has been developed using procedures designed to produce data to the National Standard for Spatial Data Accuracy (NSSDA) and is intended for use at 1" = 40 ' mapping scale. Where applicable, the vertical datum is NAVD1988.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription TYPE type: Stringwidth: 50precision: 0 Type of water body (pond, stream, wetland)
NAME type: Stringwidth: 50precision: 0 Name of water body (unpopulated)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file contains a file geodatabase with spatial datasets that accompany the scientific paper titled: "Recent Greater Sage Grouse (Centrocercus urophasianus)
Population Dynamics in Wyoming Are Primarily Driven by
Climate, not Oil and Gas Development" (Ramey, Thorley, Ivey 2015).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.
GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.
The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.
https://www.scottsdaleaz.gov/AssetFactory.aspx?did=69351https://www.scottsdaleaz.gov/AssetFactory.aspx?did=69351
Please click here to view the Data Dictionary, a description of the fields in this table.Case details on public hearing applications. This dataset joins to the Case Meetings data.1 full year of data updated weekly.
Explore the spatial patterns of the Human Development Index (HDI) to identify regional pat- terns and causal factors in the data. The GeoInquiry activity is available here.Educational standards addressed:APHG: VI:B2 Analyze spatial patterns of social and economic development – GNI per capita. APHG: VI:B1 Explain social and economic measures of development – HDI, Gender Inequali- ty Index (GII), Total Fertility Rate (TRF).APHG: VI:B6 Social and economic measures of development — Changes in fertilityand mortalityThis map is part of a Human Geography GeoInquiry activity. Learn more about GeoInquiries.